From cfd5061ced34f061e84ecca2a266f8f4cd01ce36 Mon Sep 17 00:00:00 2001 From: Simon-Kor <52245124+Simon-Kor@users.noreply.github.com> Date: Tue, 30 Apr 2024 12:26:13 +0200 Subject: Adding the first formalisation of reals --- library/numbers.tex | 140 ++++++++++++++++++++++++++++++++++++++++++++++++++++ 1 file changed, 140 insertions(+) create mode 100644 library/numbers.tex (limited to 'library/numbers.tex') diff --git a/library/numbers.tex b/library/numbers.tex new file mode 100644 index 0000000..93623fa --- /dev/null +++ b/library/numbers.tex @@ -0,0 +1,140 @@ +\import{nat.tex} +\import{order/order.tex} +\import{relation.tex} + +\section{The real numbers} + +\begin{signature} + $\reals$ is a set. +\end{signature} + +\begin{signature} + $x + y$ is a set. +\end{signature} + +\begin{signature} + $x \times y$ is a set. +\end{signature} + +\begin{axiom}\label{one_in_reals} + $1 \in \reals$. +\end{axiom} + +\begin{axiom}\label{reals_axiom_order} + $\lt[\reals]$ is an order on $\reals$. + %$\reals$ is an ordered set. +\end{axiom} + +\begin{axiom}\label{reals_axiom_strictorder} + $\lt[\reals]$ is a strict order. +\end{axiom} + +\begin{axiom}\label{reals_axiom_dense} + For all $x,y \in \reals$ if $(x,y)\in \lt[\reals]$ then + there exist $z \in \reals$ such that $(x,z) \in \lt[\reals]$ and $(z,y) \in \lt[\reals]$. + + %For all $X,Y \subseteq \reals$ if for all $x,y$ $x\in X$ and $y \in Y$ such that $x \lt[\reals] y$ + %then there exist a $z \in \reals$ such that if $x \neq z$ and $y \neq z$ $x \lt[\reals] z$ and $z \lt[\reals] y$. +\end{axiom} + +\begin{axiom}\label{reals_axiom_order_def} + $(x,y) \in \lt[\reals]$ iff there exist $z \in \reals$ such that $(\zero, z) \in \lt[\reals]$ and $x + z = y$. +\end{axiom} + +\begin{lemma}\label{reals_one_bigger_than_zero} + $(\zero,1) \in \lt[\reals]$. +\end{lemma} + + +\begin{axiom}\label{reals_axiom_assoc} + For all $x,y,z \in \reals$ $(x + y) + z = x + (y + z)$ and $(x \times y) \times z = x \times (y \times z)$. +\end{axiom} + +\begin{axiom}\label{reals_axiom_kommu} + For all $x,y \in \reals$ $x + y = y + x$ and $x \times y = y \times x$. +\end{axiom} + +\begin{axiom}\label{reals_axiom_zero_in_reals} + $\zero \in \reals$. +\end{axiom} + +%\begin{axiom}\label{reals_axiom_one_in_reals} +% $\one \in \reals$. +%\end{axiom} + +\begin{axiom}\label{reals_axiom_zero} + %There exist $\zero \in \reals$ such that + For all $x \in \reals$ $x + \zero = x$. +\end{axiom} + +\begin{axiom}\label{reals_axiom_one} + %There exist $1 \in \reals$ such that + For all $x \in \reals$ $1 \neq \zero$ and $x \times 1 = x$. +\end{axiom} + +\begin{axiom}\label{reals_axiom_add_invers} + For all $x \in \reals$ there exist $y \in \reals$ such that $x + y = \zero$. +\end{axiom} + +%TODO: Implementing Notion for negativ number such as -x. + +%\begin{abbreviation}\label{reals_notion_minus} +% $y = -x$ iff $x + y = \zero$. +%\end{abbreviation} %This abbrevation result in a killed process. + +\begin{axiom}\label{reals_axiom_mul_invers} + For all $x \in \reals$ there exist $y \in \reals$ such that $x \neq \zero$ and $x \times y = 1$. +\end{axiom} + +\begin{axiom}\label{reals_axiom_disstro1} + For all $x,y,z \in \reals$ $x \times (y + z) = (x \times y) + (x \times z)$. +\end{axiom} + +\begin{proposition}\label{reals_disstro2} + For all $x,y,z \in \reals$ $(y + z) \times x = (y \times x) + (z \times x)$. +\end{proposition} + +\begin{proposition}\label{reals_reducion_on_addition} + For all $x,y,z \in \reals$ if $x + y = x + z$ then $y = z$. +\end{proposition} + +\begin{signature} + $\invers$ is a set. +\begin{signature} + +%TODO: +%x \rless y in einer signatur hinzufügen und dann axiom x+z = y und dann \rlt in def per iff +%\inv{} für inverse benutzen. Per Signatur einfüheren und dann axiomatisch absicher +%\cdot für multiklikation verwenden. +%< für die relation benutzen. + +%\begin{signature} +% $y^{\rightarrow}$ is a function. +%\end{signature} + +%\begin{axiom}\label{notion_multi_invers} +% If $y \in \reals$ then $\invers{y} \in \reals$ and $y \times y^{\rightarrow} = 1$. +%\end{axiom} + +%\begin{abbreviation}\label{notion_fraction} +% $\frac{x}{y} = x \times y^{\rightarrow}$. +%\end{abbreviation} + +\begin{lemma}\label{order_reals_lemma1} + For all $x,y,z \in \reals$ such that $(\zero,x) \in \lt[\reals]$ + if $(y,z) \in \lt[\reals]$ + then $((y \times x), (z \times x)) \in \lt[\reals]$. +\end{lemma} + +\begin{lemma}\label{order_reals_lemma2} + For all $x,y,z \in \reals$ such that $(\zero,x) \in \lt[\reals]$ + if $(y,z) \in \lt[\reals]$ + then $((x \times y), (x \times z)) \in \lt[\reals]$. +\end{lemma} + + +\begin{lemma}\label{order_reals_lemma3} + For all $x,y,z \in \reals$ such that $(x,\zero) \in \lt[\reals]$ + if $(y,z) \in \lt[\reals]$ + then $((x \times z), (x \times y)) \in \lt[\reals]$. +\end{lemma} -- cgit v1.2.3 From 3795588d157864a411baf2fc3afb31f9f5184d93 Mon Sep 17 00:00:00 2001 From: Simon-Kor <52245124+Simon-Kor@users.noreply.github.com> Date: Tue, 7 May 2024 14:41:15 +0200 Subject: Formalization of metric spaces and some cleaning of numbers.tex Formalization of metric spaces: Therefore we introduced the predicate metric and its axiomatization. Then we introduced the term metric space in dependence of a metric function. This metric space is automatically a a topological space. --- library/numbers.tex | 72 +++++++++++++++++---------------- library/topology/metric-space.tex | 80 +++++++++++++++++++++++++++++++++++++ library/topology/order-topology.tex | 32 +++++++++++++-- 3 files changed, 146 insertions(+), 38 deletions(-) create mode 100644 library/topology/metric-space.tex (limited to 'library/numbers.tex') diff --git a/library/numbers.tex b/library/numbers.tex index 93623fa..afb7d3f 100644 --- a/library/numbers.tex +++ b/library/numbers.tex @@ -4,6 +4,14 @@ \section{The real numbers} +%TODO: Implementing Notion for negativ number such as -x. + +%TODO: +%\inv{} für inverse benutzen. Per Signatur einfüheren und dann axiomatisch absicher +%\cdot für multiklikation verwenden. +%< für die relation benutzen. + + \begin{signature} $\reals$ is a set. \end{signature} @@ -22,19 +30,31 @@ \begin{axiom}\label{reals_axiom_order} $\lt[\reals]$ is an order on $\reals$. - %$\reals$ is an ordered set. \end{axiom} \begin{axiom}\label{reals_axiom_strictorder} $\lt[\reals]$ is a strict order. \end{axiom} +\begin{abbreviation}\label{less_on_reals} + $x < y$ iff $(x,y) \in \lt[\reals]$. +\end{abbreviation} + +\begin{abbreviation}\label{greater_on_reals} + $x > y$ iff $y < x$. +\end{abbreviation} + +\begin{abbreviation}\label{lesseq_on_reals} + $x \leq y$ iff it is wrong that $x > y$. +\end{abbreviation} + +\begin{abbreviation}\label{greatereq_on_reals} + $x \geq y$ iff it is wrong that $x < y$. +\end{abbreviation} + \begin{axiom}\label{reals_axiom_dense} For all $x,y \in \reals$ if $(x,y)\in \lt[\reals]$ then there exist $z \in \reals$ such that $(x,z) \in \lt[\reals]$ and $(z,y) \in \lt[\reals]$. - - %For all $X,Y \subseteq \reals$ if for all $x,y$ $x\in X$ and $y \in Y$ such that $x \lt[\reals] y$ - %then there exist a $z \in \reals$ such that if $x \neq z$ and $y \neq z$ $x \lt[\reals] z$ and $z \lt[\reals] y$. \end{axiom} \begin{axiom}\label{reals_axiom_order_def} @@ -57,18 +77,12 @@ \begin{axiom}\label{reals_axiom_zero_in_reals} $\zero \in \reals$. \end{axiom} - -%\begin{axiom}\label{reals_axiom_one_in_reals} -% $\one \in \reals$. -%\end{axiom} - + \begin{axiom}\label{reals_axiom_zero} - %There exist $\zero \in \reals$ such that For all $x \in \reals$ $x + \zero = x$. \end{axiom} \begin{axiom}\label{reals_axiom_one} - %There exist $1 \in \reals$ such that For all $x \in \reals$ $1 \neq \zero$ and $x \times 1 = x$. \end{axiom} @@ -76,11 +90,6 @@ For all $x \in \reals$ there exist $y \in \reals$ such that $x + y = \zero$. \end{axiom} -%TODO: Implementing Notion for negativ number such as -x. - -%\begin{abbreviation}\label{reals_notion_minus} -% $y = -x$ iff $x + y = \zero$. -%\end{abbreviation} %This abbrevation result in a killed process. \begin{axiom}\label{reals_axiom_mul_invers} For all $x \in \reals$ there exist $y \in \reals$ such that $x \neq \zero$ and $x \times y = 1$. @@ -98,27 +107,8 @@ For all $x,y,z \in \reals$ if $x + y = x + z$ then $y = z$. \end{proposition} -\begin{signature} - $\invers$ is a set. -\begin{signature} - -%TODO: -%x \rless y in einer signatur hinzufügen und dann axiom x+z = y und dann \rlt in def per iff -%\inv{} für inverse benutzen. Per Signatur einfüheren und dann axiomatisch absicher -%\cdot für multiklikation verwenden. -%< für die relation benutzen. - -%\begin{signature} -% $y^{\rightarrow}$ is a function. -%\end{signature} -%\begin{axiom}\label{notion_multi_invers} -% If $y \in \reals$ then $\invers{y} \in \reals$ and $y \times y^{\rightarrow} = 1$. -%\end{axiom} -%\begin{abbreviation}\label{notion_fraction} -% $\frac{x}{y} = x \times y^{\rightarrow}$. -%\end{abbreviation} \begin{lemma}\label{order_reals_lemma1} For all $x,y,z \in \reals$ such that $(\zero,x) \in \lt[\reals]$ @@ -138,3 +128,15 @@ if $(y,z) \in \lt[\reals]$ then $((x \times z), (x \times y)) \in \lt[\reals]$. \end{lemma} + +\begin{lemma}\label{a} + For all $x,y \in \reals$ if $x > y$ then $x \geq y$. +\end{lemma} + +\begin{lemma}\label{aa} + For all $x,y \in \reals$ if $x < y$ then $x \leq y$. +\end{lemma} + +\begin{lemma}\label{aaa} + For all $x,y \in \reals$ if $x \leq y \leq x$ then $x=y$. +\end{lemma} \ No newline at end of file diff --git a/library/topology/metric-space.tex b/library/topology/metric-space.tex new file mode 100644 index 0000000..7021a60 --- /dev/null +++ b/library/topology/metric-space.tex @@ -0,0 +1,80 @@ +\import{topology/topological-space.tex} +\import{numbers.tex} +\import{function.tex} + +\section{Metric Spaces} + +\begin{abbreviation}\label{metric} + $f$ is a metric iff $f$ is a function to $\reals$. +\end{abbreviation} + +\begin{axiom}\label{metric_axioms} + $f$ is a metric iff $\dom{f} = A \times A$ and + for all $x,y,z \in A$ we have + $f(x,x) = \zero$ and + $f(x,y) = f(y,x)$ and + $f(x,y) \leq f(x,z) + f(z,y)$ and + if $x \neq y$ then $\zero < f(x,y)$. +\end{axiom} + +\begin{definition}\label{open_ball} + $\openball{r}{x}{f} = \{z \in M \mid \text{ $f$ is a metric and $\dom{f} = M \times M$ and $f(x,z) Date: Tue, 7 May 2024 14:50:35 +0200 Subject: Clean up of Notation in numbers.tex First notation of tupels in the relation set was swapped with the canonical <. --- library/numbers.tex | 26 +++++++++++++------------- 1 file changed, 13 insertions(+), 13 deletions(-) (limited to 'library/numbers.tex') diff --git a/library/numbers.tex b/library/numbers.tex index afb7d3f..df47d81 100644 --- a/library/numbers.tex +++ b/library/numbers.tex @@ -53,16 +53,16 @@ \end{abbreviation} \begin{axiom}\label{reals_axiom_dense} - For all $x,y \in \reals$ if $(x,y)\in \lt[\reals]$ then - there exist $z \in \reals$ such that $(x,z) \in \lt[\reals]$ and $(z,y) \in \lt[\reals]$. + For all $x,y \in \reals$ if $x < y$ then + there exist $z \in \reals$ such that $x < z$ and $z < y$. \end{axiom} \begin{axiom}\label{reals_axiom_order_def} - $(x,y) \in \lt[\reals]$ iff there exist $z \in \reals$ such that $(\zero, z) \in \lt[\reals]$ and $x + z = y$. + $x < y$ iff there exist $z \in \reals$ such that $\zero < z$ and $x + z = y$. \end{axiom} \begin{lemma}\label{reals_one_bigger_than_zero} - $(\zero,1) \in \lt[\reals]$. + $\zero < 1$. \end{lemma} @@ -111,22 +111,22 @@ \begin{lemma}\label{order_reals_lemma1} - For all $x,y,z \in \reals$ such that $(\zero,x) \in \lt[\reals]$ - if $(y,z) \in \lt[\reals]$ - then $((y \times x), (z \times x)) \in \lt[\reals]$. + For all $x,y,z \in \reals$ such that $\zero < x$ + if $y < z$ + then $(y \times x) < (z \times x)$. \end{lemma} \begin{lemma}\label{order_reals_lemma2} - For all $x,y,z \in \reals$ such that $(\zero,x) \in \lt[\reals]$ - if $(y,z) \in \lt[\reals]$ - then $((x \times y), (x \times z)) \in \lt[\reals]$. + For all $x,y,z \in \reals$ such that $\zero < x$ + if $y < z$ + then $(x \times y) < (x \times z)$. \end{lemma} \begin{lemma}\label{order_reals_lemma3} - For all $x,y,z \in \reals$ such that $(x,\zero) \in \lt[\reals]$ - if $(y,z) \in \lt[\reals]$ - then $((x \times z), (x \times y)) \in \lt[\reals]$. + For all $x,y,z \in \reals$ such that $x < \zero$ + if $y < z$ + then $(x \times z) < (x \times y)$. \end{lemma} \begin{lemma}\label{a} -- cgit v1.2.3 From 08019dcdaf3b13bb8ce554dfd5377690bb508c6d Mon Sep 17 00:00:00 2001 From: Simon-Kor <52245124+Simon-Kor@users.noreply.github.com> Date: Tue, 7 May 2024 18:08:04 +0200 Subject: formalisation mertic optimized --- library/numbers.tex | 18 ++++++++++------- library/topology/metric-space.tex | 41 ++++++++++++++++++++++++++------------- 2 files changed, 38 insertions(+), 21 deletions(-) (limited to 'library/numbers.tex') diff --git a/library/numbers.tex b/library/numbers.tex index df47d81..a0e2211 100644 --- a/library/numbers.tex +++ b/library/numbers.tex @@ -10,7 +10,7 @@ %\inv{} für inverse benutzen. Per Signatur einfüheren und dann axiomatisch absicher %\cdot für multiklikation verwenden. %< für die relation benutzen. - +% sup und inf einfügen \begin{signature} $\reals$ is a set. @@ -92,7 +92,7 @@ \begin{axiom}\label{reals_axiom_mul_invers} - For all $x \in \reals$ there exist $y \in \reals$ such that $x \neq \zero$ and $x \times y = 1$. + For all $x \in \reals$ such that $x \neq \zero$ there exist $y \in \reals$ such that $x \times y = 1$. \end{axiom} \begin{axiom}\label{reals_axiom_disstro1} @@ -107,7 +107,10 @@ For all $x,y,z \in \reals$ if $x + y = x + z$ then $y = z$. \end{proposition} - +\begin{axiom}\label{reals_axiom_dedekind_complete} + For all $X,Y,x,y$ such that $X,Y \subseteq \reals$ and $x \in X$ and $y \in Y$ and $x < y$ we have there exist $z \in \reals$ + such that $x < z < y$. +\end{axiom} \begin{lemma}\label{order_reals_lemma1} @@ -129,14 +132,15 @@ then $(x \times z) < (x \times y)$. \end{lemma} -\begin{lemma}\label{a} +\begin{lemma}\label{o4rder_reals_lemma} For all $x,y \in \reals$ if $x > y$ then $x \geq y$. \end{lemma} -\begin{lemma}\label{aa} +\begin{lemma}\label{order_reals_lemma5} For all $x,y \in \reals$ if $x < y$ then $x \leq y$. \end{lemma} -\begin{lemma}\label{aaa} +\begin{lemma}\label{order_reals_lemma6} For all $x,y \in \reals$ if $x \leq y \leq x$ then $x=y$. -\end{lemma} \ No newline at end of file +\end{lemma} + diff --git a/library/topology/metric-space.tex b/library/topology/metric-space.tex index 7021a60..2a31d95 100644 --- a/library/topology/metric-space.tex +++ b/library/topology/metric-space.tex @@ -4,23 +4,22 @@ \section{Metric Spaces} -\begin{abbreviation}\label{metric} - $f$ is a metric iff $f$ is a function to $\reals$. -\end{abbreviation} - -\begin{axiom}\label{metric_axioms} - $f$ is a metric iff $\dom{f} = A \times A$ and - for all $x,y,z \in A$ we have +\begin{definition}\label{metric} + $f$ is a metric on $M$ iff $f$ is a function from $M \times M$ to $\reals$ and + for all $x,y,z \in M$ we have $f(x,x) = \zero$ and $f(x,y) = f(y,x)$ and $f(x,y) \leq f(x,z) + f(z,y)$ and if $x \neq y$ then $\zero < f(x,y)$. -\end{axiom} +\end{definition} \begin{definition}\label{open_ball} - $\openball{r}{x}{f} = \{z \in M \mid \text{ $f$ is a metric and $\dom{f} = M \times M$ and $f(x,z) Date: Tue, 14 May 2024 16:55:40 +0200 Subject: work on metric spaces --- library/numbers.tex | 49 +++++++++++++++++++++++++++++++++++++++ library/topology/metric-space.tex | 45 +++++++++++++++++++++++++++++++++-- 2 files changed, 92 insertions(+), 2 deletions(-) (limited to 'library/numbers.tex') diff --git a/library/numbers.tex b/library/numbers.tex index a0e2211..5dd06da 100644 --- a/library/numbers.tex +++ b/library/numbers.tex @@ -144,3 +144,52 @@ For all $x,y \in \reals$ if $x \leq y \leq x$ then $x=y$. \end{lemma} +\begin{axiom}\label{reals_axiom_minus} + For all $x \in \reals$ $x - x = \zero$. +\end{axiom} + +\begin{lemma}\label{reals_minus} + Assume $x,y \in \reals$. If $x - y = \zero$ then $x=y$. +\end{lemma} + +%\begin{definition}\label{reasl_supremum} %expaction "there exists" after \mid +% $\rsup{X} = \{z \mid \text{ $z \in \reals$ and for all $x,y$ such that $x \in X$ and $y,x \in \reals$ and $x < y$ we have $z \leq y$ }\}$. +%\end{definition} + +\begin{definition}\label{upper_bound} + $x$ is an upper bound of $X$ iff for all $y \in X$ we have $x > y$. +\end{definition} + +\begin{definition}\label{least_upper_bound} + $x$ is a least upper bound of $X$ iff $x$ is an upper bound of $X$ and for all $y$ such that $y$ is an upper bound of $X$ we have $x \leq y$. +\end{definition} + +\begin{lemma}\label{supremum_unique} + %Let $x,y \in \reals$ and let $X$ be a subset of $\reals$. + If $x$ is a least upper bound of $X$ and $y$ is a least upper bound of $X$ then $x = y$. +\end{lemma} + +\begin{definition}\label{supremum_reals} + $x$ is the supremum of $X$ iff $x$ is a least upper bound of $X$. +\end{definition} + + + + +\begin{definition}\label{lower_bound} + $x$ is an lower bound of $X$ iff for all $y \in X$ we have $x < y$. +\end{definition} + +\begin{definition}\label{greatest_lower_bound} + $x$ is a greatest lower bound of $X$ iff $x$ is an lower bound of $X$ and for all $y$ such that $y$ is an lower bound of $X$ we have $x \geq y$. +\end{definition} + +\begin{lemma}\label{infimum_unique} + %Let $x,y \in \reals$ and let $X$ be a subset of $\reals$. + If $x$ is a greatest lower bound of $X$ and $y$ is a greatest lower bound of $X$ then $x = y$. +\end{lemma} + +\begin{definition}\label{infimum_reals} + $x$ is the supremum of $X$ iff $x$ is a greatest lower bound of $X$. +\end{definition} + diff --git a/library/topology/metric-space.tex b/library/topology/metric-space.tex index 2a31d95..8ec83f7 100644 --- a/library/topology/metric-space.tex +++ b/library/topology/metric-space.tex @@ -1,6 +1,7 @@ \import{topology/topological-space.tex} \import{numbers.tex} \import{function.tex} +\import{set/powerset.tex} \section{Metric Spaces} @@ -17,7 +18,46 @@ $\openball{r}{x}{f} = \{z \in M \mid \text{ $f$ is a metric on $M$ and $f(x,z) < r$ } \}$. \end{definition} -%TODO: \metric_opens{d} = {hier die construction für topology} + + +\begin{definition}\label{induced_topology} + $O$ is the induced topology of $d$ in $M$ iff + $O \subseteq \pow{M}$ and + $d$ is a metric on $M$ and + for all $x,r,A,B,C$ + such that $x \in M$ and $r \in \reals$ and $A,B \in O$ and $C$ is a family of subsets of $O$ + we have $\openball{r}{x}{d} \in O$ and $\unions{C} \in O$ and $A \inter B \in O$. +\end{definition} + +%\begin{definition} +% $\projcetfirst{A} = \{a \mid \exists x \in X \text{there exist $x \i } \}$ +%\end{definition} + +\begin{definition}\label{set_of_balls} + $\balls{d}{M} = \{ O \in \pow{M} \mid \text{there exists $x,r$ such that $r \in \reals$ and $x \in M$ we have $O = \openball{r}{x}{d}$ } \}$. +\end{definition} + + +\begin{definition}\label{toindsas} + $\metricopens{d}{M} = \{O \in \pow{M} \mid \text{ + $d$ is a metric on $M$ and + for all $x,r,A,B,C$ + such that $x \in M$ and $r \in \reals$ and $A,B \in O$ and $C$ is a family of subsets of $O$ + we have $\openball{r}{x}{d} \in O$ and $\unions{C} \in O$ and $A \inter B \in O$. + } \}$. + +\end{definition} + +\begin{theorem}\label{metric_induce_a_topology} + + + +\end{theorem} + + + + +%TODO: \metric_opens{d} = {hier die construction für topology} DONE. %TODO: Die induzierte topology definieren und dann in struct verwenden. @@ -44,7 +84,7 @@ \begin{lemma}\label{union_of_open_balls_is_open} Let $M$ be a metric space. - For all $U,V \subseteq M$ if $U$ is an open ball in $M$ and $V$ is an open ball in $M$ then $U \union V$ is open in $M$. + For all $U,V \subseteq M$ if $U$, $V$ are open balls in $M$ then $U \union V$ is open in $M$. \end{lemma} @@ -56,6 +96,7 @@ + \begin{lemma}\label{metric_implies_topology} Let $M$ be a set, and let $f$ be a metric on $M$. Then $M$ is a metric space. -- cgit v1.2.3