From c580901e967c6bf0b012017a868a2c360e25370a Mon Sep 17 00:00:00 2001 From: Simon-Kor <52245124+Simon-Kor@users.noreply.github.com> Date: Fri, 5 Jul 2024 10:42:24 +0200 Subject: Proof of 1 is identity on the naturals and begin of Disstributiv law naturals proof --- library/numbers.tex | 68 +++++++++++++++++++++++++++++++++++++++++++++++++++-- 1 file changed, 66 insertions(+), 2 deletions(-) (limited to 'library/numbers.tex') diff --git a/library/numbers.tex b/library/numbers.tex index b83827a..113aadb 100644 --- a/library/numbers.tex +++ b/library/numbers.tex @@ -102,7 +102,7 @@ \end{axiom} \begin{axiom}\label{naturals_mul_axiom_1} - For all $n \in \naturals$ we have $n \rmul \zero = \zero$. + For all $n \in \naturals$ we have $n \rmul \zero = \zero = \zero \rmul n$. \end{axiom} \begin{axiom}\label{naturals_mul_axiom_2} @@ -203,6 +203,9 @@ Let $n \in \naturals$. Then $1 + n = n + 1$. \end{proposition} +\begin{proof} + Follows by \cref{suc_eq_plus_one,naturals_addition_axiom_2,naturals_addition_axiom_1,naturals_inductive_set,one_is_suc_zero}. +\end{proof} \begin{proposition}\label{naturals_add_kommu} For all $n \in \naturals$ we have for all $m\in \naturals$ we have $n + m = m + n$. @@ -240,14 +243,75 @@ \end{proof} \begin{proposition}\label{naturals_rmul_one} - For all $n \in \naturals$ we have $n \rmul 1 = n$. + For all $n \in \naturals$ we have $1 \rmul n = n$. \end{proposition} +\begin{proof} + Fix $n \in \naturals$. + \begin{align*} + 1 \rmul n \\ + &= \suc{\zero} \rmul n \\ + &= (\zero \rmul n) + n \\ + &= (\zero) + n \\ + &= n + \end{align*} +\end{proof} + +\begin{proposition}\label{naturals_add_remove_brakets} + Suppose $n,m,k \in \naturals$. + Then $(n + m) + k = n + m + k$. +\end{proposition} + +\begin{proposition}\label{natural_disstro} + Suppose $n,m,k \in \naturals$. + Then $n \rmul (m + k) = (n \rmul m) + (n \rmul k)$. +\end{proposition} +\begin{proof} + Let $P = \{n \in \naturals \mid \text{for all $m,k \in \naturals$ we have $n \rmul (m + k) = (n \rmul m) + (n \rmul k)$}\}$. + $\zero \in P$. + $P \subseteq \naturals$. + It suffices to show that for all $n \in P$ we have $\suc{n} \in P$. + Fix $n \in P$. + It suffices to show that for all $m \in \naturals$ we have $\suc{n} \rmul (m + k) = (\suc{n} \rmul m) + (\suc{n} \rmul k)$. + Fix $m \in \naturals$. + It suffices to show that for all $k \in \naturals$ we have $\suc{n} \rmul (m + k) = (\suc{n} \rmul m) + (\suc{n} \rmul k)$. + Fix $k \in \naturals$. + \begin{align*} + \suc{n} \rmul (m + k) \\ + &= (n \rmul (m + k)) + (m + k) \\% \explanation{by \cref{naturals_mul_axiom_2}}\\ + &= ((n \rmul m) + (n \rmul k)) + (m + k) \explanation{by assumption}\\ + &= ((n \rmul m) + (n \rmul k)) + m + k \explanation{by \cref{naturals_add_remove_brakets,naturals_add_kommu}}\\ + &= (((n \rmul m) + (n \rmul k)) + m) + k \explanation{by \cref{naturals_add_kommu,naturals_add_remove_brakets,naturals_add_assoc}}\\ + &= (m + ((n \rmul m) + (n \rmul k))) + k \explanation{by \cref{naturals_add_kommu}}\\ + &= ((m + (n \rmul m)) + (n \rmul k)) + k \explanation{by \cref{naturals_add_assoc}}\\ + &= (((n \rmul m) + m) + (n \rmul k)) + k \explanation{by \cref{naturals_add_kommu}}\\ + &= ((n \rmul m) + m) + ((n \rmul k) + k) \explanation{by \cref{naturals_add_assoc}}\\ + &= (\suc{n} \rmul m) + (\suc{n} \rmul k) \explanation{by \cref{naturals_mul_axiom_2}} + \end{align*} +\end{proof} \begin{proposition}\label{naturals_mul_kommu} Let $n, m \in \naturals$. Then $n \rmul m = m \rmul n$. \end{proposition} +\begin{proof} + Let $P = \{n \in \naturals \mid \forall m \in \naturals. n \rmul m = m \rmul n\}$. + $\zero \in P$. + $P \subseteq \naturals$. + It suffices to show that for all $n \in P$ we have $\suc{n} \in P$. + Fix $n \in P$. + It suffices to show that for all $m \in \naturals$ we have $\suc{n} \rmul m = m \rmul \suc{n}$. + Fix $m \in \naturals$. + $n \rmul m = m \rmul n$. + + \begin{align*} + \suc{n} \rmul m \\ + &= (n \rmul m) + m \\ + &= (m \rmul n) + m \\ + &= m + (m \rmul n) \\ + &= m \rmul \suc{n} \\ + \end{align*} +\end{proof} \begin{proposition}\label{naturals_rmul_assoc} Suppose $n,m,k \in \naturals$. -- cgit v1.2.3