From cfd5061ced34f061e84ecca2a266f8f4cd01ce36 Mon Sep 17 00:00:00 2001 From: Simon-Kor <52245124+Simon-Kor@users.noreply.github.com> Date: Tue, 30 Apr 2024 12:26:13 +0200 Subject: Adding the first formalisation of reals --- library/numbers.tex | 140 ++++++++++++++++++++++++++++++++++++++++++++++++++++ 1 file changed, 140 insertions(+) create mode 100644 library/numbers.tex (limited to 'library/numbers.tex') diff --git a/library/numbers.tex b/library/numbers.tex new file mode 100644 index 0000000..93623fa --- /dev/null +++ b/library/numbers.tex @@ -0,0 +1,140 @@ +\import{nat.tex} +\import{order/order.tex} +\import{relation.tex} + +\section{The real numbers} + +\begin{signature} + $\reals$ is a set. +\end{signature} + +\begin{signature} + $x + y$ is a set. +\end{signature} + +\begin{signature} + $x \times y$ is a set. +\end{signature} + +\begin{axiom}\label{one_in_reals} + $1 \in \reals$. +\end{axiom} + +\begin{axiom}\label{reals_axiom_order} + $\lt[\reals]$ is an order on $\reals$. + %$\reals$ is an ordered set. +\end{axiom} + +\begin{axiom}\label{reals_axiom_strictorder} + $\lt[\reals]$ is a strict order. +\end{axiom} + +\begin{axiom}\label{reals_axiom_dense} + For all $x,y \in \reals$ if $(x,y)\in \lt[\reals]$ then + there exist $z \in \reals$ such that $(x,z) \in \lt[\reals]$ and $(z,y) \in \lt[\reals]$. + + %For all $X,Y \subseteq \reals$ if for all $x,y$ $x\in X$ and $y \in Y$ such that $x \lt[\reals] y$ + %then there exist a $z \in \reals$ such that if $x \neq z$ and $y \neq z$ $x \lt[\reals] z$ and $z \lt[\reals] y$. +\end{axiom} + +\begin{axiom}\label{reals_axiom_order_def} + $(x,y) \in \lt[\reals]$ iff there exist $z \in \reals$ such that $(\zero, z) \in \lt[\reals]$ and $x + z = y$. +\end{axiom} + +\begin{lemma}\label{reals_one_bigger_than_zero} + $(\zero,1) \in \lt[\reals]$. +\end{lemma} + + +\begin{axiom}\label{reals_axiom_assoc} + For all $x,y,z \in \reals$ $(x + y) + z = x + (y + z)$ and $(x \times y) \times z = x \times (y \times z)$. +\end{axiom} + +\begin{axiom}\label{reals_axiom_kommu} + For all $x,y \in \reals$ $x + y = y + x$ and $x \times y = y \times x$. +\end{axiom} + +\begin{axiom}\label{reals_axiom_zero_in_reals} + $\zero \in \reals$. +\end{axiom} + +%\begin{axiom}\label{reals_axiom_one_in_reals} +% $\one \in \reals$. +%\end{axiom} + +\begin{axiom}\label{reals_axiom_zero} + %There exist $\zero \in \reals$ such that + For all $x \in \reals$ $x + \zero = x$. +\end{axiom} + +\begin{axiom}\label{reals_axiom_one} + %There exist $1 \in \reals$ such that + For all $x \in \reals$ $1 \neq \zero$ and $x \times 1 = x$. +\end{axiom} + +\begin{axiom}\label{reals_axiom_add_invers} + For all $x \in \reals$ there exist $y \in \reals$ such that $x + y = \zero$. +\end{axiom} + +%TODO: Implementing Notion for negativ number such as -x. + +%\begin{abbreviation}\label{reals_notion_minus} +% $y = -x$ iff $x + y = \zero$. +%\end{abbreviation} %This abbrevation result in a killed process. + +\begin{axiom}\label{reals_axiom_mul_invers} + For all $x \in \reals$ there exist $y \in \reals$ such that $x \neq \zero$ and $x \times y = 1$. +\end{axiom} + +\begin{axiom}\label{reals_axiom_disstro1} + For all $x,y,z \in \reals$ $x \times (y + z) = (x \times y) + (x \times z)$. +\end{axiom} + +\begin{proposition}\label{reals_disstro2} + For all $x,y,z \in \reals$ $(y + z) \times x = (y \times x) + (z \times x)$. +\end{proposition} + +\begin{proposition}\label{reals_reducion_on_addition} + For all $x,y,z \in \reals$ if $x + y = x + z$ then $y = z$. +\end{proposition} + +\begin{signature} + $\invers$ is a set. +\begin{signature} + +%TODO: +%x \rless y in einer signatur hinzufügen und dann axiom x+z = y und dann \rlt in def per iff +%\inv{} für inverse benutzen. Per Signatur einfüheren und dann axiomatisch absicher +%\cdot für multiklikation verwenden. +%< für die relation benutzen. + +%\begin{signature} +% $y^{\rightarrow}$ is a function. +%\end{signature} + +%\begin{axiom}\label{notion_multi_invers} +% If $y \in \reals$ then $\invers{y} \in \reals$ and $y \times y^{\rightarrow} = 1$. +%\end{axiom} + +%\begin{abbreviation}\label{notion_fraction} +% $\frac{x}{y} = x \times y^{\rightarrow}$. +%\end{abbreviation} + +\begin{lemma}\label{order_reals_lemma1} + For all $x,y,z \in \reals$ such that $(\zero,x) \in \lt[\reals]$ + if $(y,z) \in \lt[\reals]$ + then $((y \times x), (z \times x)) \in \lt[\reals]$. +\end{lemma} + +\begin{lemma}\label{order_reals_lemma2} + For all $x,y,z \in \reals$ such that $(\zero,x) \in \lt[\reals]$ + if $(y,z) \in \lt[\reals]$ + then $((x \times y), (x \times z)) \in \lt[\reals]$. +\end{lemma} + + +\begin{lemma}\label{order_reals_lemma3} + For all $x,y,z \in \reals$ such that $(x,\zero) \in \lt[\reals]$ + if $(y,z) \in \lt[\reals]$ + then $((x \times z), (x \times y)) \in \lt[\reals]$. +\end{lemma} -- cgit v1.2.3