From 442d732696ad431b84f6e5c72b6ee785be4fd968 Mon Sep 17 00:00:00 2001 From: adelon <22380201+adelon@users.noreply.github.com> Date: Sat, 10 Feb 2024 02:22:14 +0100 Subject: Initial commit --- library/order/order.tex | 102 ++++++++++++++++++++++++++++++++++++++++++++++++ 1 file changed, 102 insertions(+) create mode 100644 library/order/order.tex (limited to 'library/order/order.tex') diff --git a/library/order/order.tex b/library/order/order.tex new file mode 100644 index 0000000..339bad8 --- /dev/null +++ b/library/order/order.tex @@ -0,0 +1,102 @@ +\import{relation.tex} +\import{relation/properties.tex} +\import{order/quasiorder.tex} + +% also called "(partial) ordering" or "partial order" to contrast with connex (i.e. "total") orders. +\begin{abbreviation}\label{order} + $R$ is an order iff + $R$ is an antisymmetric quasiorder. +\end{abbreviation} + +\begin{abbreviation}\label{order_on} + $R$ is an order on $A$ iff + $R$ is an antisymmetric quasiorder on $A$. +\end{abbreviation} + +\begin{abbreviation}\label{strictorder} + $R$ is a strict order iff + $R$ is transitive and asymmetric. +\end{abbreviation} + +\begin{struct}\label{orderedset} + An ordered set $X$ is a quasiordered set + such that + \begin{enumerate} + \item\label{orderedset_antisym} $\lt[X]$ is antisymmetric. + \end{enumerate} +\end{struct} + +\begin{definition}\label{tostrictorder} + $\tostrictorder{R} = \{w\in R\mid \fst{w}\neq\snd{w}\}$. +\end{definition} + +\begin{definition}\label{toorder} + $\toorder{A}{R} = R\union\identity{A}$. +\end{definition} + +\begin{proposition}\label{tostrictorder_iff} + $(a,b)\in\tostrictorder{R}$ iff $(a,b)\in R$ and $a\neq b$. +\end{proposition} +\begin{proof} + Follows by \cref{tostrictorder,fst_eq,snd_eq}. +\end{proof} + +\begin{proposition}\label{toorder_reflexive} + $\toorder{A}{R}$ is reflexive on $A$. +\end{proposition} + +\begin{proposition}\label{toorder_intro} + Suppose $(a,b)\in R$. + Then $(a,b)\in\toorder{A}{R}$. +\end{proposition} +\begin{proof} + $R\subseteq\toorder{A}{R}$. +\end{proof} + +\begin{proposition}\label{toorder_elim} + Suppose $(a,b)\in\toorder{A}{R}$. + Then $(a,b)\in R$ or $a = b$. +\end{proposition} +\begin{proof} + Follows by \cref{toorder,id,union_iff,upair_intro_right,tostrictorder_iff}. +\end{proof} + +\begin{proposition}\label{toorder_iff} + $(a,b)\in\toorder{A}{R}$ iff $(a,b)\in R$ or $a = b\in A$. +\end{proposition} + +\begin{proposition}\label{strictorder_from_order} + Suppose $R$ is an order. + Then $\tostrictorder{R}$ is a strict order. +\end{proposition} +\begin{proof} + $\tostrictorder{R}$ is asymmetric. + $\tostrictorder{R}$ is transitive. +\end{proof} + +\begin{proposition}\label{order_from_strictorder} + Suppose $R$ is a strict order. + Suppose $R$ is a binary relation on $A$. + Then $\toorder{A}{R}$ is an order on $A$. +\end{proposition} +\begin{proof} + $\toorder{A}{R}$ is antisymmetric. + $\toorder{A}{R}$ is transitive by \cref{transitive,toorder_iff}. + $\toorder{A}{R}$ is reflexive on $A$. +\end{proof} + +\begin{proposition}\label{subseteqrel_antisymmetric} + $\subseteqrel{A}$ is antisymmetric. +\end{proposition} +\begin{proof} + Follows by \cref{subseteqrel,antisymmetric,pair_eq_iff,subseteq_antisymmetric}. +\end{proof} + + +\begin{proposition}\label{subseteqrel_is_order} + $\subseteqrel{A}$ is an order on $A$. +\end{proposition} +\begin{proof} + $\subseteqrel{A}$ is a quasiorder on $A$ by \cref{subseteqrel_is_quasiorder}. + $\subseteqrel{A}$ is antisymmetric by \cref{subseteqrel_antisymmetric}. +\end{proof} -- cgit v1.2.3