From 442d732696ad431b84f6e5c72b6ee785be4fd968 Mon Sep 17 00:00:00 2001 From: adelon <22380201+adelon@users.noreply.github.com> Date: Sat, 10 Feb 2024 02:22:14 +0100 Subject: Initial commit --- library/ordinal.tex | 638 ++++++++++++++++++++++++++++++++++++++++++++++++++++ 1 file changed, 638 insertions(+) create mode 100644 library/ordinal.tex (limited to 'library/ordinal.tex') diff --git a/library/ordinal.tex b/library/ordinal.tex new file mode 100644 index 0000000..3063162 --- /dev/null +++ b/library/ordinal.tex @@ -0,0 +1,638 @@ +\import{set.tex} +\import{set/cons.tex} +\import{set/powerset.tex} +\import{set/regularity.tex} +\import{set/suc.tex} +\import{nat.tex} + + +\section{Transitive sets} + +We use the word \emph{transitive} to talk about sets as relations, +so we will explicitly talk about \emph{\in-transitivity} here. + +% Here we have to ask TeX to forgive us for eliding the math +% mode around \in. We have to put the following into +% the preamble of our document: +% +% \let\mathonlyin\in +% \renewcommand{\in}{\ensuremath{\mathonlyin}} +% +\begin{definition}\label{transitiveset} + A set $A$ is \in-transitive iff for all $x, y$ + such that $x\in y\in A$ we have $x\in A$. +\end{definition} + +\begin{proposition}\label{transitiveset_iff_subseteq} + $A$ is \in-transitive iff + for all $a\in A$ we have $a\subseteq A$. +\end{proposition} + +\begin{proposition}\label{transitiveset_iff_pow} + $A$ is \in-transitive iff $A\subseteq \pow{A}$. +\end{proposition} +\begin{proof} + For all $a\in A$ we have $a\subseteq A \iff a\in\pow{A}$. + Follows by \cref{elem_subseteq,subseteq,pow_iff,transitiveset_iff_subseteq}. +\end{proof} + +\begin{proposition}\label{transitiveset_iff_unions_suc} + $A$ is \in-transitive iff $\unions{\suc{A}} = A$. +\end{proposition} +\begin{proof} + Follows by \cref{transitiveset,subseteq,subseteq_antisymmetric,suc,transitiveset_iff_pow,unions_subseteq_of_powerset_is_subseteq,unions_iff,suc_subseteq_intro,powerset_top}. +\end{proof} + +\begin{proposition}\label{transitiveset_iff_unions_subseteq} + $A$ is \in-transitive iff $\unions{A}\subseteq A$. +\end{proposition} + +\begin{proposition}\label{transitiveset_upair} + Suppose $A$ is \in-transitive. + Suppose $\{a,b\}\in A$. + Then $a,b\in A$. +\end{proposition} + +% For Kuratowski pairs only: +%\begin{proposition}\label{transitiveset_pair} +% Suppose $A$ is \in-transitive. +% Suppose $(a,b )\in A$. +% Then $a,b\in A$. +%\end{proposition} + +% For Kuratowski pairs only: +%\begin{proposition}\label{transitiveset_dom} +% Suppose $C$ is \in-transitive. +% Suppose $A\times B\subseteq C$. +% Suppose $b\in B$. +% Then $A\subseteq C$. +%\end{proposition} + +% For Kuratowski pairs only: +%\begin{proposition}\label{transitiveset_ran} +% Suppose $C$ is \in-transitive. +% Suppose $A\times B\subseteq C$. +% Suppose $a\in A$. +% Then $B\subseteq C$. +%\end{proposition} + +\subsubsection{Closure properties of \in-transitive sets} + +\begin{proposition}\label{emptyset_transitiveset} + $\emptyset$ is \in-transitive. +\end{proposition} + +\begin{proposition}\label{union_of_transitiveset_is_transitiveset} + Suppose $A$ and $B$ are \in-transitive. + Then $A\union B$ is \in-transitive. +\end{proposition} + +\begin{proposition}\label{inter_of_transitiveset_is_transitiveset} + Let $A, B$ be \in-transitive sets. + Then $A\inter B$ is \in-transitive. +\end{proposition} + +\begin{proposition}\label{suc_of_transitiveset_is_transitiveset} + Let $A$ be an \in-transitive set. + Then $\suc{A}$ is \in-transitive. +\end{proposition} + +\begin{proposition}\label{unions_of_transitiveset_is_transitiveset} + Let $A$ be an \in-transitive set. + Then $\unions{A}$ is \in-transitive. +\end{proposition} + +\begin{proposition}\label{unions_family_of_transitiveset_is_transitiveset} + Suppose every element of $A$ is an \in-transitive set. + Then $\unions{A}$ is \in-transitive. +\end{proposition} +\begin{proof} + Follows by \cref{transitiveset,unions_iff}. +\end{proof} + +\begin{proposition}\label{inters_family_of_transitiveset_is_transitiveset} + Suppose every element of $A$ is an \in-transitive set. + Then $\inters{A}$ is \in-transitive. +\end{proposition} +\begin{proof} + Follows by \cref{transitiveset,inters,unions_family_of_transitiveset_is_transitiveset}. +\end{proof} + + +\section{Ordinals} + +\begin{definition}\label{ordinal} + $\alpha$ is an ordinal iff + $\alpha$ is \in-transitive and + every element of $\alpha$ is \in-transitive. +\end{definition} + +\begin{proposition}\label{ordinal_intro} + Suppose $\alpha$ is \in-transitive. + Suppose every element of $\alpha$ is \in-transitive. + Then $\alpha$ is an ordinal. +\end{proposition} + +\begin{proposition}\label{ordinal_is_transitiveset} + Let $\alpha$ be an ordinal. + Then $\alpha$ is \in-transitive. +\end{proposition} + +\begin{proposition}\label{ordinal_elem_is_transitiveset} + Let $\alpha$ be an ordinal. + Suppose $A\in\alpha$. + Then $A$ is \in-transitive. +\end{proposition} + +\begin{proposition}\label{elem_of_ordinal_is_ordinal} + Let $\alpha$ be an ordinal. + Suppose $\beta\in\alpha$. + Then $\beta$ is an ordinal. +\end{proposition} + +\begin{proposition}\label{suc_ordinal_implies_ordinal} + Suppose $\suc{\alpha}$ is an ordinal. + Then $\alpha$ is an ordinal. +\end{proposition} + +\begin{proposition}\label{transitivesubseteq_of_ordinal_is_ordinal} + Let $\alpha$ be an ordinal. + Suppose $\beta\subseteq\alpha$. + Suppose $\beta$ is \in-transitive. + Then $\beta$ is an ordinal. +\end{proposition} +\begin{proof} + Follows by \cref{subseteq,ordinal}. +\end{proof} + +\begin{proposition}\label{ordinal_elem_implies_subseteq} + Let $\alpha,\beta$ be ordinals. + Suppose $\alpha\in\beta$. + Then $\alpha\subseteq\beta$. +\end{proposition} + +\begin{proposition}\label{ordinal_transitivity} + Let $\alpha$ be an ordinal. + Suppose $\gamma\in\beta\in\alpha$. + Then $\gamma\in\alpha$. +\end{proposition} +\begin{proof} + Follows by \cref{ordinal,transitiveset}. + % Vampire proof: Follows by \cref{ordinal,subseteq,transitiveset_iff_subseteq}. +\end{proof} + +\begin{proposition}\label{ordinal_suc_subseteq} + Let $\beta$ be an ordinal. + Suppose $\alpha\in\beta$. + Then $\suc{\alpha}\subseteq\beta$. +\end{proposition} + + +\begin{abbreviation}\label{ordinal_prec} + $\alpha \precedes \beta$ iff + $\beta$ is an ordinal and + $\alpha\in\beta$. +\end{abbreviation} + +\begin{abbreviation}\label{ordinal_preceq} + $\alpha\precedeseq \beta$ iff $\beta$ is an ordinal and $\alpha\subseteq\beta$. + % + %$\alpha\precedeseq \beta$ iff $\alpha\precedes\beta$ + %or $\alpha = \beta$ and $\beta$ is an ordinal. + % + %$\alpha\precedeseq \beta$ iff $\alpha\precedes\beta$ + %or $\beta$ is an ordinal equal to $\alpha$. +\end{abbreviation} + +\begin{lemma}\label{prec_is_ordinal} + Let $\alpha,\beta$ be sets. + Suppose $\alpha\precedes \beta$. + Then $\alpha$ is an ordinal. +\end{lemma} +\begin{proof} + Follows by \cref{elem_of_ordinal_is_ordinal}. +\end{proof} + +We already have global irreflexivity and asymmetry of \in. +\in\ is transitive on ordinals by definition. +To show that \in\ is a strict total order it only remains to show that \in\ is connex. + +\begin{proposition}\label{ordinal_elem_connex} + For all ordinals $\alpha,\beta$ + we have $\alpha\in\beta\lor \beta\in\alpha \lor \alpha = \beta$. +\end{proposition} +\begin{proof}[Proof by \in-induction on $\alpha$] + % Ind hypothesis: + % ![Xi,Xbeta]:(elem(Xi,falpha)=>((ordinal(Xi)&ordinal(Xbeta))=>(elem(Xi,Xbeta)|elem(Xbeta,Xi)|Xi=Xbeta)))) + % Goal: + % ordinal(falpha)&ordinal(fbeta))=>(elem(falpha,fbeta)|elem(fbeta,falpha)|falpha=fbeta) + % + Assume $\alpha$ is an ordinal. + Show for all ordinals $\gamma$ we have $\alpha\in\gamma\lor \gamma\in\alpha \lor \alpha = \gamma$. + \begin{subproof}[Proof by \in-induction on $\gamma$] + % Now we have: + % ![Xi]:(elem(Xi,fgamma)=>(ordinal(Xi)=>(elem(falpha,Xi)|elem(Xi,falpha)|falpha=Xi)))). + % Goal: ordinal(fgamma)=>(elem(falpha,fgamma)|elem(fgamma,falpha)|falpha=fgamma)) + % + Assume $\gamma$ is an ordinal. + % Goal: + % elem(falpha,fgamma)|elem(fgamma,falpha)|falpha=fgamma + % + % Original Vampire proof: + % Follows by \cref{setext,transitiveset,ordinal,in_implies_neq,prec_is_ordinal,in_asymmetric}. + % + % Pruned proof: + Follows by \cref{setext,transitiveset,ordinal}. + \end{subproof} +\end{proof} + +\begin{proposition}\label{ordinal_proper_subset_implies_elem} + Let $\alpha,\beta$ be ordinals. + Suppose $\alpha\subset\beta$. + Then $\alpha\in\beta$. +\end{proposition} +\begin{proof} + $\beta\setminus\alpha$ is inhabited. + Take $\gamma$ such that $\gamma$ is an \in-minimal element of $\beta\setminus\alpha$. + Now $\gamma\in\beta$ by \cref{setminus_elim_left}. + Hence $\gamma\subseteq\beta$ + by \cref{ordinal,transitiveset_iff_subseteq}. + For all $\delta\in\beta\setminus\alpha$ we have $\delta\notin\gamma$. + Thus $\gamma\setminus\alpha = \emptyset$. + Hence $\gamma\subseteq\alpha$. + It suffices to show that for all $\delta\in\alpha$ we have $\delta\in\gamma$. + Suppose not. + Take $\delta\in\alpha$ such that $\delta\notin\gamma$. + Now if $\delta = \gamma$ or $\gamma\in\delta$, then $\gamma\in\alpha$ + % Original Vampire proof: by \cref{ordinal,elem_subseteq,elem_of_ordinal_is_ordinal,setminus_elim_left,ordinal_elem_connex,inter_eq_left_implies_subseteq,inter_absorb_supseteq_left,transitiveset_iff_subseteq}. + by \cref{ordinal,elem_subseteq,elem_of_ordinal_is_ordinal,ordinal_elem_connex,transitiveset_iff_subseteq}. +\end{proof} + +\begin{proposition}\label{ordinal_elem_implies_proper_subset} + Let $\alpha,\beta$ be ordinals. + Suppose $\alpha\in\beta$. + Then $\alpha\subset\beta$. +\end{proposition} +\begin{proof} + $\alpha\subseteq\beta$. +\end{proof} + +\begin{proposition}\label{ordinal_preceq_implies_subseteq} +Let $\alpha,\beta$ be ordinals. +Suppose $\alpha\precedeseq\beta$. +Then $\alpha\subseteq\beta$. +\end{proposition} +\begin{proof} + \begin{byCase} + \caseOf{$\alpha = \beta$.} + Trivial. + \caseOf{$\alpha\precedes\beta$.} + $\alpha\subset\beta$. + \end{byCase} +\end{proof} + +%\begin{proposition}% +%\label{ordinal-subseteq-implies-preceq} +%Let $\alpha,\beta$ be ordinals. +%Suppose $\alpha\subseteq\beta$. +%Then $\alpha\precedeseq\beta$. +%\end{proposition} +%\begin{proof} +% \begin{byCase} +% \caseOf{$\alpha = \beta$.} +% Trivial. +% \caseOf{$\alpha\subset\beta$.} +% $\alpha\precedes\beta$. +% \end{byCase} +%\end{proof} + + +\begin{proposition}\label{ordinal_elem_or_subseteq} + Let $\alpha,\beta$ be ordinals. + Then $\alpha\in\beta$ or $\beta\subseteq\alpha$. +\end{proposition} + + +\begin{proposition}\label{ordinal_subseteq_or_subseteq} + Let $\alpha,\beta$ be ordinals. + Then $\alpha\subseteq\beta$ or $\beta\subseteq\alpha$. +\end{proposition} + + +\begin{proposition}\label{ordinal_subseteq_implies_elem_or_eq} + Let $\alpha,\beta$ be ordinals. + Suppose $\alpha\subseteq\beta$. + Then $\alpha\in\beta$ or $\alpha = \beta$. +\end{proposition} + + +\begin{corollary}\label{ordinal_subset_trichotomy} + Let $\alpha,\beta$ be ordinals. + Then $(\alpha\subset\beta \lor \beta\subset\alpha) \lor \alpha = \beta$. +\end{corollary} + +\begin{proposition}\label{ordinal_nor_elem_implies_eq} + Let $\alpha,\beta$ be ordinals. + Suppose neither $\alpha\in\beta$ nor $\beta\in\alpha$. + Then $\alpha = \beta$. +\end{proposition} +\begin{proof} + Neither $\alpha\subset\beta$ nor $\beta\subset\alpha$. +\end{proof} + +\begin{proposition}\label{ordinal_in_trichotomy} + Let $\alpha,\beta$ be ordinals. Then $(\alpha\in\beta \lor \beta\in\alpha) \lor \alpha = \beta$. +\end{proposition} +\begin{proof} + Suppose not. + Then neither $\alpha\in\beta$ nor $\beta\in\alpha$. + Thus $\alpha = \beta$ by \cref{ordinal_nor_elem_implies_eq}. Contradiction. +\end{proof} + +\begin{corollary}\label{ordinal_prec_trichotomy} + Let $\alpha,\beta$ be ordinals. + Suppose neither $\alpha\precedes\beta$ nor $\beta\precedes\alpha$. + Then $\alpha = \beta$. +\end{corollary} +\begin{proof} + Follows by \cref{ordinal_nor_elem_implies_eq}. +\end{proof} + +\begin{corollary}\label{ordinal_elem_or_superset} + Let $\alpha,\beta$ be ordinals. Then $\alpha\in \beta$ or $\beta\subseteq \alpha$. +\end{corollary} + + + +\subsubsection{Construction of ordinals} + +\begin{proposition}\label{emptyset_is_ordinal} + $\emptyset$ is an ordinal. +\end{proposition} + +% The proof of this theorem benefits from the alternate definition of +% transitivity in terms of $\subseteq$. +\begin{proposition}\label{suc_ordinal} + Let $\alpha$ be an ordinal. + $\suc{\alpha}$ is an ordinal. +\end{proposition} +\begin{proof} + $\suc{\alpha}$ is \in-transitive by \cref{ordinal,suc_of_transitiveset_is_transitiveset}. + For every $\beta\in\alpha$ we have that $\beta$ is \in-transitive. +\end{proof} + +\begin{proposition}\label{ordinal_iff_suc_ordinal} + $\alpha$ is an ordinal iff $\suc{\alpha}$ is an ordinal. +\end{proposition} + +\begin{proposition}\label{ordinal_in_suc} + Let $\alpha$ be an ordinal. + Then $\alpha\in\suc{\alpha}$. +\end{proposition} + +\begin{corollary}\label{ordinal_precedes_suc} + Let $\alpha$ be an ordinal. + Then $\alpha\precedes \suc{\alpha}$. +\end{corollary} + +\begin{proposition}\label{ordinal_elem_implies_subset_of_suc} + Let $\alpha,\beta$ be ordinals. + Suppose $\alpha\in\beta$. + Then $\alpha\subseteq\suc{\beta}$. +\end{proposition} +\begin{proof} + $\alpha\subset \beta$. + In particular, $\alpha\subseteq \beta$. + Hence $\alpha\subseteq \cons{\beta}{\beta}$. +\end{proof} + +\begin{proposition}\label{unions_of_ordinal_is_ordinal} + Let $\alpha$ be an ordinal. + Then $\unions{\alpha}$ is an ordinal. +\end{proposition} +\begin{proof} + For all $x, y$ such that $x\in y\in \unions{\alpha}$ we have $x\in \unions{\alpha}$ + by \cref{unions_intro,unions_iff,transitiveset,ordinal}. + Thus $\unions{\alpha}$ is \in-transitive. + Every element of $\unions{\alpha}$ is \in-transitive. +\end{proof} + +\begin{lemma}\label{ordinal_subseteq_unions} + Let $\alpha$ be an ordinal. + Then $\unions{\alpha}\subseteq \alpha$. +\end{lemma} +\begin{proof} + Follows by \cref{ordinal,transitiveset_iff_unions_subseteq}. +\end{proof} + +\begin{proposition}\label{union_of_two_ordinals_is_ordinal} + Let $\alpha,\beta$ be ordinals. + Then $\alpha\union\beta$ is an ordinal. +\end{proposition} +\begin{proof} + $\alpha\union\beta$ is \in-transitive by \cref{union_of_transitiveset_is_transitiveset,ordinal}. + Every element of $\alpha\union\beta$ is \in-transitive + by \cref{transitiveset,union_iff,ordinal}. + Follows by \cref{ordinal}. +\end{proof} + +\begin{proposition}\label{ordinal_empty_or_emptyset_elem} + For all ordinals $\alpha$ + we have $\alpha=\emptyset$ or $\emptyset\in\alpha$. +\end{proposition} +\begin{proof}[Proof by \in-induction] + Straightforward. +\end{proof} + +\begin{proposition}\label{transitive_set_of_ordinals_is_ordinal} + Let $A$ be a set. + Suppose that for every $\alpha\in A$ we have $\alpha$ is an ordinal. + Suppose that $A$ is \in-transitive. + Then $A$ is an ordinal. +\end{proposition} + +% Apparently Russel first noticed this antimony while reading a paper by Burali-Forti. +% Typographic NB: Cesare Burali-Forti is a single person, therefore only a single hyphen! +\begin{theorem}[Burali-Forti antimony]\label{buraliforti_antinomy} + There exists no set $\Omega$ such that + for all $\alpha$ we have $\alpha\in \Omega$ iff $\alpha$ is an ordinal. +\end{theorem} +\begin{proof} + Suppose not. + Take $\Omega$ such that for all $\alpha$ we have $\alpha\in \Omega$ iff $\alpha$ is an ordinal. + For all $x, y$ such that $x\in y\in \Omega$ we have $x\in \Omega$. + Thus $\Omega$ is \in-transitive. + Thus $\Omega$ is an ordinal. + Therefore $\Omega\in\Omega$. + Contradiction. +\end{proof} + +\begin{proposition}\label{inters_of_ordinals_is_ordinal} + Let $A$ be an inhabited set. + Suppose for every $\alpha\in A$ we have $\alpha$ is an ordinal. + Then $\inters{A}$ is an ordinal. +\end{proposition} +\begin{proof} + It suffices to show that $\inters{A}$ is \in-transitive. +\end{proof} + +\begin{proposition}\label{inters_of_ordinals_subseteq} + Let $A$ be an inhabited set. + Suppose for every $\alpha\in A$ we have $\alpha$ is an ordinal. + Then for all $\alpha\in A$ we have $\inters{A}\subseteq \alpha$. +\end{proposition} + +\begin{proposition}\label{inters_of_ordinals_elem} + Let $A$ be an inhabited set. + Suppose for every $\alpha\in A$ we have $\alpha$ is an ordinal. + Then $\inters{A}\in A$. +\end{proposition} +\begin{proof} + % Vampire proof: + Follows by \cref{inters_of_ordinals_is_ordinal,in_implies_neq,inters_iff_forall,ordinal_subseteq_implies_elem_or_eq,inters_subseteq_elem}. +\end{proof} + +\begin{proposition}\label{inters_of_ordinals_is_minimal} + Let $A$ be an inhabited set. + Suppose for every $\alpha\in A$ we have $\alpha$ is an ordinal. + Then $\inters{A}$ is an \in-minimal element of $A$. +\end{proposition} +\begin{proof} + For all $\alpha\in A$ we have $\inters{A}\subseteq \alpha$. +\end{proof} + +\begin{proposition}\label{inters_of_ordinals_is_minimal_alternate} + Let $A$ be an inhabited set. + Suppose for every $\alpha\in A$ we have $\alpha$ is an ordinal. + Then for all $\alpha\in A$ we have $\inters{A} = \alpha$ or $\inters{A}\in\alpha$. +\end{proposition} +\begin{proof} + For all $\alpha\in A$ we have $\inters{A}\subseteq \alpha$. +\end{proof} + +\begin{proposition}\label{inter_of_two_ordinals_is_ordinal} + Let $\alpha,\beta$ be ordinals. + Then $\alpha\inter\beta$ is an ordinal. + \end{proposition} +\begin{proof} + $\alpha\inter\beta$ is \in-transitive by \cref{inter,ordinal,transitiveset}. + Every element of $\alpha\inter\beta$ is \in-transitive + by \cref{transitiveset,inter,ordinal}. + Follows by \cref{ordinal}. +\end{proof} + + +\subsubsection{Limit and successor ordinals} + + +\begin{definition}\label{limit_ordinal} + $\lambda$ is a limit ordinal iff + $\emptyset\precedes \lambda$ % by definition of \precedes this means that $\lambda$ is an ordinal + and for all $\alpha\in \lambda$ we have $\suc{\alpha}\in \lambda$. +\end{definition} + +\begin{definition}\label{successor_ordinal} + $\alpha$ is a successor ordinal iff + there exists an ordinal $\beta$ such that $\alpha = \suc{\beta}$. +\end{definition} + +\begin{lemma}\label{positive_ordinal_is_limit_or_successor} + Let $\alpha$ be an ordinal such that $\emptyset\precedes\alpha$. + Then $\alpha$ is a limit ordinal or $\alpha$ is a successor ordinal. +\end{lemma} +\begin{proof} + \begin{byCase} + \caseOf{$\alpha$ is a limit ordinal.} + Trivial. + \caseOf{$\alpha$ is not a limit ordinal.} + Take $\beta$ such that $\beta\in\alpha$ and $\suc{\beta}\notin\alpha$ + by \cref{limit_ordinal}. + \end{byCase} +\end{proof} + +\begin{lemma}\label{zero_not_successorordinal} + $\emptyset$ is not a successor ordinal. +\end{lemma} + +\begin{lemma}\label{zero_not_limitordinal} + $\emptyset$ is not a limit ordinal. +\end{lemma} +\begin{proof} + Suppose not. + Then $\emptyset\precedes \emptyset$ by \cref{notin_emptyset,limit_ordinal}. + Thus $\emptyset\in \emptyset$. + Contradiction. +\end{proof} + +\begin{lemma}\label{suc_elem_limitordinal} + Let $\lambda$ be a limit ordinal. + Let $\alpha\in\lambda$. + Then $\suc{\alpha}\in\lambda$. +\end{lemma} +\begin{proof} + Follows by \cref{limit_ordinal}. +\end{proof} + +\begin{lemma}\label{limitordinal_eq_unions} + Let $\lambda$ be a limit ordinal. + Then $\unions{\lambda} = \lambda$. +\end{lemma} +\begin{proof} + $\unions{\lambda}\subseteq\lambda$ by \cref{limit_ordinal,ordinal_subseteq_unions}. + For all $\alpha\in\lambda$ we have $\alpha\in\suc{\alpha}\in\lambda$ by \cref{suc_intro_self,suc_elem_limitordinal}. + Thus $\lambda\subseteq\unions{\lambda}$ by \cref{subseteq,unions_intro}. + Follows by \cref{subseteq_antisymmetric}. +\end{proof} + + +\subsection{Natural numbers as ordinals} + +\begin{lemma}\label{nat_is_successor_ordinal} + Let $n\in\naturals$. + Suppose $n\neq \emptyset$. + Then $n$ is a successor ordinal. +\end{lemma} +\begin{proof} + Let $M = \{ m\in \naturals \mid\text{$m = \emptyset$ or $m$ is a successor ordinal}\}$. + $M$ is an inductive set by \cref{suc_ordinal,naturals_inductive_set,successor_ordinal,emptyset_is_ordinal}. + Now $M\subseteq \naturals\subseteq M$ + by \cref{subseteq,naturals_smallest_inductive_set}. + Thus $M = \naturals$. + Follows by \cref{subseteq}. +\end{proof} + +\begin{lemma}\label{nat_is_transitiveset} + $\naturals$ is \in-transitive. +\end{lemma} +\begin{proof} + Let $M = \{ m\in\naturals \mid \text{for all $n\in m$ we have $n\in\naturals$} \}$. + $\emptyset\in M$. + For all $n\in M$ we have $\suc{n}\in M$ + by \cref{naturals_inductive_set,suc}. + Thus $M$ is an inductive set. + Now $M\subseteq \naturals\subseteq M$ + by \cref{subseteq,naturals_smallest_inductive_set}. + Hence $\naturals = M$. +\end{proof} + +\begin{lemma}\label{natural_number_is_ordinal} + Every natural number is an ordinal. +\end{lemma} +\begin{proof} + Follows by \cref{suc_ordinal,suc_neq_emptyset,naturals_inductive_set,nat_is_successor_ordinal,successor_ordinal,suc_ordinal_implies_ordinal}. +\end{proof} + +\begin{lemma}\label{omega_is_an_ordinal} + $\naturals$ is an ordinal. +\end{lemma} +\begin{proof} + Follows by \cref{natural_number_is_ordinal,transitive_set_of_ordinals_is_ordinal,nat_is_transitiveset}. +\end{proof} + +\begin{lemma}\label{omega_is_a_limit_ordinal} + $\naturals$ is a limit ordinal. +\end{lemma} +\begin{proof} + $\emptyset\precedes \naturals$. + If $n\in \naturals$, then $\suc{n}\in\naturals$. +\end{proof} -- cgit v1.2.3