From 442d732696ad431b84f6e5c72b6ee785be4fd968 Mon Sep 17 00:00:00 2001 From: adelon <22380201+adelon@users.noreply.github.com> Date: Sat, 10 Feb 2024 02:22:14 +0100 Subject: Initial commit --- library/relation.tex | 1081 ++++++++++++++++++++++++++++++++++++++++++++++++++ 1 file changed, 1081 insertions(+) create mode 100644 library/relation.tex (limited to 'library/relation.tex') diff --git a/library/relation.tex b/library/relation.tex new file mode 100644 index 0000000..b5aebcd --- /dev/null +++ b/library/relation.tex @@ -0,0 +1,1081 @@ +\import{set.tex} +\import{set/powerset.tex} +\import{set/product.tex} + +\section{Relations} + +\begin{definition}\label{relation} + $R$ is a relation iff + for all $w\in R$ there exists $x, y$ such that $w = (x, y)$. +\end{definition} + +\begin{definition}\label{comparable} + $a$ is comparable with $b$ in $R$ iff $a\mathrel{R}b$ or $b\mathrel{R}a$. +\end{definition} + +\begin{proposition}\label{relext} + Let $R, S$ be relations. + Suppose for all $x,y$ we have $x\mathrel{R} y$ iff $x\mathrel{S} y$. + Then $R = S$. +\end{proposition} +\begin{proof} + Follows by set extensionality. +\end{proof} + +\begin{abbreviation}\label{family_of_relations} + $F$ is a family of relations iff + every element of $F$ is a relation. +\end{abbreviation} + +\begin{proposition}\label{unions_of_family_of_relations_is_relation} + Let $F$ be a family of relations. + Then $\unions{F}$ is a relation. +\end{proposition} + +\begin{proposition}\label{inters_of_family_of_relations_is_relation} + Let $F$ be a family of relations. + Then $\inters{F}$ is a relation. +\end{proposition} + +\begin{proposition}\label{union_relations_is_relation} + Let $R, S$ be relations. + Then $R\union S$ is a relation. +\end{proposition} + +\begin{proposition}\label{union_relations_is_relation_type} + Suppose $R\subseteq A\times B$. + Suppose $S\subseteq C\times D$. + Then $R\union S\subseteq (A\union C)\times (B\union D)$. +\end{proposition} +\begin{proof} + Follows by \cref{subseteq,union_times_elim,union_iff,union_subseteq_union}. +\end{proof} + +\begin{proposition}\label{inter_relations_is_relation} + Let $R, S$ be relations. + Then $R\inter S$ is a relation. +\end{proposition} + +\begin{proposition}\label{setminus_relations_is_relation} + Let $R, S$ be relations. + Then $R\setminus S$ is a relation. +\end{proposition} + + + +\subsection{Converse of a relation} + +\begin{definition}\label{converse_relation} + $\converse{R} = \{ z\mid \exists w\in R. \exists x, y. w = (x, y)\land z = (y, x)\}$. +\end{definition} + +\begin{proposition}\label{converse_intro} + If $y\mathrel{R} x$, then $x\mathrel{\converse{R}} y$. +\end{proposition} + +\begin{proposition}\label{converse_elim} + If $x\mathrel{\converse{R}} y$, then $y\mathrel{R} x$. +\end{proposition} + +\begin{proposition}\label{converse_iff} + $x\mathrel{\converse{R}} y$ iff $y\mathrel{R} x$. +\end{proposition} + + +\begin{proposition}\label{converse_is_relation} + $\converse{R}$ is a relation. +\end{proposition} + + +\begin{proposition}\label{converse_converse_iff} + $x \mathrel{\converse{\converse{R}}} y$ iff $x\mathrel{R} y$. +\end{proposition} + +% Only works if the starting set was a relation (i.e. only has pairs as elements). +\begin{proposition}\label{converse_converse_eq} + Let $R$ be a relation. + Then $\converse{\converse{R}} = R$. +\end{proposition} +\begin{proof} + Follows by set extensionality. +\end{proof} + +\begin{proposition}\label{converse_type} + Suppose $R\subseteq A\times B$. + Then $\converse{R}\subseteq B\times A$. +\end{proposition} +\begin{proof} + It suffices to show that every element of $\converse{R}$ is an element of $B\times A$ + by \cref{subseteq}. + Fix $w\in\converse{R}$. + Take $x, y$ such that $w = (y, x)$ and $x\mathrel{R} y$ by \cref{converse_relation}. + Now $(x,y)\in A\times B$ by \cref{subseteq}. + Thus $x\in A$ and $y\in B$ by \cref{times_tuple_elim}. + Hence $(y,x)\in B\times A$ by \cref{times_tuple_intro}. +\end{proof} + +\begin{proposition}\label{converse_times} + Then $\converse{B\times A} = A\times B$. +\end{proposition} +\begin{proof} + For all $w$ we have $w\in\converse{B\times A}$ iff $w\in A\times B$ + by \cref{converse_relation,times,times_elem_is_tuple,times_tuple_elim}. + Follows by \hyperref[setext]{extensionality}. + %Follows by set extensionality. +\end{proof} + +\begin{proposition}\label{converse_emptyset} + Then $\converse{\emptyset} = \emptyset$. +\end{proposition} +\begin{proof} + Follows by set extensionality. +\end{proof} + +\begin{proposition}\label{converse_subseteq_intro} + Let $R$ be a relation. + If $R\subseteq S$, then $\converse{R}\subseteq\converse{S}$. +\end{proposition} +\begin{proof} + Follows by \cref{subseteq,converse_relation,relation}. +\end{proof} + +\begin{proposition}\label{converse_subseteq_elim} + Let $R$ be a relation. + If $\converse{R}\subseteq\converse{S}$, then $R\subseteq S$. +\end{proposition} +\begin{proof} + Follows by \cref{subseteq,converse_relation,relation,converse_subseteq_intro,converse_converse_iff}. +\end{proof} + +\begin{proposition}\label{converse_subseteq_iff} + Let $R$ be a relation. + $\converse{R}\subseteq\converse{S}$ iff $R\subseteq S$. +\end{proposition} +\begin{proof} + Follows by \cref{converse_subseteq_elim,converse_subseteq_intro}. +\end{proof} + +\begin{proposition}\label{converse_union} + $\converse{(R\union S)} = \converse{R}\union\converse{S}$. +\end{proposition} +\begin{proof} + $\converse{(R\union S)}$ is a relation by \cref{converse_is_relation}. + $\converse{R}\union\converse{S}$ is a relation by \cref{converse_is_relation,union_relations_is_relation}. + For all $a,b$ we have $(a,b)\in\converse{(R\union S)}$ iff $(a,b)\in\converse{R}\union\converse{S}$ + by \cref{union_iff,converse_iff}. + Follows by \hyperref[relext]{extensionality}. +\end{proof} + +\begin{proposition}\label{converse_inter} + $\converse{(R\inter S)} = \converse{R}\inter\converse{S}$. +\end{proposition} +\begin{proof} + $\converse{(R\inter S)}$ is a relation by \cref{converse_is_relation}. + $\converse{R}\inter\converse{S}$ is a relation by \cref{converse_is_relation,inter_relations_is_relation}. + For all $a,b$ we have $(a,b)\in\converse{(R\inter S)}$ iff $(a,b)\in\converse{R}\inter\converse{S}$ + by \cref{inter,converse_iff}. + Follows by \hyperref[relext]{extensionality}. +\end{proof} + +\begin{proposition}\label{converse_setminus} + $\converse{(R\setminus S)} = \converse{R}\setminus\converse{S}$. +\end{proposition} +\begin{proof} + $\converse{(R\setminus S)}$ is a relation by \cref{converse_is_relation}. + $\converse{R}\setminus\converse{S}$ is a relation by \cref{converse_is_relation,setminus_relations_is_relation}. + For all $a,b$ we have $(a,b)\in\converse{(R\setminus S)}$ iff $(a,b)\in\converse{R}\setminus\converse{S}$. + Follows by \hyperref[relext]{extensionality}. +\end{proof} + + + +\subsubsection{Domain of a relation} + +\begin{definition}\label{dom} + $\dom{R} = \{ x\mid \exists w\in R. \exists y. w = (x, y)\}$. +\end{definition} + +\begin{proposition}\label{dom_iff} + $a\in\dom{R}$ iff there exists $b$ such that $a\mathrel{R} b$. +\end{proposition} + +\begin{proposition}\label{dom_intro} + Suppose $a\mathrel{R} b$. + Then $a\in\dom{R}$. +\end{proposition} +\begin{proof} + Follows by \cref{dom_iff}. +\end{proof} + +\begin{proposition}\label{dom_emptyset} + $\dom{\emptyset} = \emptyset$. +\end{proposition} +\begin{proof} + Follows by set extensionality. +\end{proof} + +\begin{proposition}\label{dom_times} + $\dom{(A\times B)}\subseteq A$. +\end{proposition} + +\begin{proposition}\label{dom_times_inhabited} + Suppose $b\in B$. + $\dom{(A\times B)} = A$. +\end{proposition} +\begin{proof} + Follows by set extensionality. +\end{proof} + +\begin{proposition}\label{dom_cons} + $\dom{\cons{(a,b)}{R}} = \cons{a}{\dom{R}}$. +\end{proposition} +\begin{proof} + Follows by set extensionality. +\end{proof} + +\begin{proposition}\label{dom_union} + $\dom{(A\union B)} = \dom{A}\union\dom{B}$. +\end{proposition} +\begin{proof} + Follows by set extensionality. +\end{proof} + +\begin{proposition}\label{dom_inter} + $\dom{(A\inter B)}\subseteq \dom{A}\inter\dom{B}$. +\end{proposition} +\begin{proof} + Follows by \cref{subseteq,inter,dom_iff}. +\end{proof} + +\begin{proposition}\label{dom_setminus} + $\dom{(A\setminus B)}\supseteq \dom{A}\setminus\dom{B}$. +\end{proposition} + +% TODO (also needs to import set/cons) +%\begin{proposition}\label{dom_remove_invariant} +% Suppose $a\mathrel{R}b$. +% Suppose $b\neq c$. +% Then $\dom{\remove{(a,b)}{R}} = \dom{R}$. +%\end{proposition} + +\subsubsection{Range of a relation} + +\begin{definition}\label{ran} + $\ran{R} = \{ y\mid \exists w\in R. \exists x. w = (x, y)\}$. +\end{definition} + +\begin{proposition}\label{ran_iff} + $b\in\ran{R}$ iff there exists $a$ such that $a\mathrel{R} b$. +\end{proposition} + +\begin{proposition}\label{ran_intro} + Suppose $a\mathrel{R} b$. + Then $b\in\ran{R}$. +\end{proposition} +\begin{proof} + Follows by \cref{ran_iff}. +\end{proof} + +\begin{proposition}\label{ran_emptyset} + $\ran{\emptyset} = \emptyset$. +\end{proposition} +\begin{proof} + Follows by set extensionality. +\end{proof} + +\begin{proposition}\label{ran_times} + $\ran{(A\times B)}\subseteq B$. +\end{proposition} + +\begin{proposition}\label{ran_times_inhabited} + Suppose $a\in A$. + $\ran{(A\times B)} = B$. +\end{proposition} +\begin{proof} + Follows by set extensionality. +\end{proof} + +\begin{proposition}\label{ran_cons} + $\ran{(\cons{(a,b)}{R})} = \cons{b}{\ran{R}}$. +\end{proposition} +\begin{proof} + Follows by set extensionality. +\end{proof} + +\begin{proposition}\label{ran_union} + $\ran{(A\union B)} = \ran{A}\union\ran{B}$. +\end{proposition} +\begin{proof} + Follows by set extensionality. +\end{proof} + +\begin{proposition}\label{ran_inter} + $\ran{(A\inter B)}\subseteq \ran{A}\inter\ran{B}$. +\end{proposition} +\begin{proof} + Follows by \cref{subseteq,inter,ran_iff}. +\end{proof} + +\begin{proposition}\label{ran_setminus} + $\ran{(A\setminus B)}\supseteq \ran{A}\setminus\ran{B}$. +\end{proposition} +\begin{proof} + Follows by \cref{subseteq,setminus,ran_iff}. +\end{proof} + +\subsubsection{Domain and range of converse} + +\begin{proposition}\label{dom_converse} + $\dom{\converse{R}} = \ran{R}$. +\end{proposition} +\begin{proof} + Follows by set extensionality. +\end{proof} + +\begin{proposition}\label{ran_converse} + $\ran{\converse{R}} = \dom{R}$. +\end{proposition} +\begin{proof} + Follows by set extensionality. +\end{proof} + + +\subsubsection{Field of a relation} + +% We ues fld for the label instead of field so that field stays available for the +% algebraic structure. +\begin{definition}\label{fld} + $\fld{R} = \dom{R}\union\ran{R}$. +\end{definition} + +\begin{proposition}\label{fld_iff} + $c\in\fld{R}$ iff there exists $d$ such that $c\mathrel{R}d$ or $d\mathrel{R}c$. +\end{proposition} +\begin{proof} + Follows by \cref{fld,dom_iff,ran_iff,union_iff}. +\end{proof} + +\begin{proposition}\label{fld_intro_left} + Suppose $(a,b)\in R$. + Then $a\in\fld{R}$. +\end{proposition} +\begin{proof} + Follows by \cref{fld,dom,union_iff}. +\end{proof} + +\begin{proposition}\label{fld_intro_right} + Suppose $(a,b)\in R$. + Then $b\in\fld{R}$. +\end{proposition} +\begin{proof} + Follows by \cref{fld,ran,union_iff}. +\end{proof} + +\begin{proposition}\label{dom_subseteq_fld} + Then $\dom{R}\subseteq\fld{R}$. +\end{proposition} +\begin{proof} + Follows by \cref{fld,union_upper_left}. +\end{proof} + +\begin{proposition}\label{ran_subseteq_fld} + Then $\ran{R}\subseteq\fld{R}$. +\end{proposition} +\begin{proof} + Follows by \cref{fld,union_upper_right}. +\end{proof} + +\begin{proposition}\label{fld_times} + $\fld{(A\times B)}\subseteq A\union B$. +\end{proposition} +\begin{proof} + Follows by \cref{fld,dom_times,ran_times,union_subseteq_union}. +\end{proof} + +\begin{proposition}\label{relation_elem_times_fld} + Let $R$ be a relation. + Suppose $w\in R$. + Then $w\in\fld{R}\times\fld{R}$. +\end{proposition} +\begin{proof} + Take $a,b$ such that $w = (a, b)$ by \cref{relation}. + Then $a,b\in\fld{R}$ by \cref{fld_iff}. + Thus $(a,b)\in\fld{R}\times\fld{R}$ by \cref{times_tuple_intro}. +\end{proof} + +\begin{proposition}\label{relation_subseteq_times_fld} + Let $R$ be a relation. + Then $R\subseteq\fld{R}\times\fld{R}$. +\end{proposition} +\begin{proof} + Follows by \cref{relation_elem_times_fld,subseteq}. +\end{proof} + +\begin{proposition}\label{fld_universal} + $\fld{(A\times A)} = A$. +\end{proposition} + +\begin{proposition}\label{fld_emptyset} + $\fld{\emptyset} = \emptyset$. +\end{proposition} + +\begin{proposition}\label{fld_cons} + $\fld{(\cons{(a,b)}{R})} = \cons{a}{\cons{b}{\fld{R}}}$. +\end{proposition} + +\begin{proposition}\label{fld_union} + $\fld{(A\union B)} = \fld{A}\union\fld{B}$. +\end{proposition} +\begin{proof} + \begin{align*} + \fld{(A\union B)} + &= \dom{(A\union B)}\union\ran{(A\union B)} + \explanation{by \cref{fld}}\\ + &= (\dom{A}\union\dom{B})\union(\ran{A}\union\ran{B}) + \explanation{by \cref{dom_union,ran_union}}\\ + &= (\dom{A}\union\ran{A})\union(\dom{B}\union\ran{B}) + \explanation{by \cref{union_comm,union_assoc}}\\ + &= \fld{A}\union\fld{B} + \explanation{by \cref{fld}} + \end{align*} +\end{proof} + +\begin{proposition}\label{fld_inter} + $\fld{(A\inter B)}\subseteq \fld{A}\inter\fld{B}$. +\end{proposition} +\begin{proof} + % LATER this is surprisingly slow because the ATP can generate lots of nested intersection terms. + Follows by \cref{subseteq,fld_iff,subseteq_inter_iff}. +\end{proof} + +\begin{proposition}\label{fld_setminus} + $\fld{(A\setminus B)}\supseteq \fld{A}\setminus\fld{B}$. +\end{proposition} +\begin{proof} + Follows by \cref{setminus_subseteq,fld_iff,subseteq,setminus}. +\end{proof} + +\begin{proposition}\label{fld_converse} + $\fld{\converse{R}} = \fld{R}$. +\end{proposition} +\begin{proof} + Follows by \cref{fld,dom_converse,ran_converse,union_comm}. +\end{proof} + + +\subsection{Image} + +\begin{definition}\label{img} + $\img{R}{A} = \{b\in\ran{R} \mid \exists a\in A. a\mathrel{R} b \}$. +\end{definition} + +\begin{proposition}\label{img_elem_intro} + Suppose $a\in A$ and $a\mathrel{R} b$. + Then $b\in\img{R}{A}$. +\end{proposition} +\begin{proof} + Follows by \cref{img,ran}. +\end{proof} + +\begin{proposition}\label{img_iff} + $b\in\img{R}{A}$ iff there exists $a\in A$ such that $a\mathrel{R} b$. +\end{proposition} + +\begin{proposition}\label{img_subseteq} + Suppose $A\subseteq B$. + Then $\img{R}{A}\subseteq \img{R}{B}$. +\end{proposition} +\begin{proof} + Follows by \cref{subseteq,img_iff}. +\end{proof} + +\begin{proposition}\label{img_subseteq_ran} + Then $\img{R}{A}\subseteq \ran{R}$. +\end{proposition} + +\begin{proposition}\label{img_dom} + Then $\img{R}{\dom{R}} = \ran{R}$. +\end{proposition} + +\begin{proposition}\label{img_union} + $\img{R}{A\union B} = \img{R}{A}\union\img{R}{B}$. +\end{proposition} +\begin{proof} + Follows by \cref{setext,union_iff,img_iff}. +\end{proof} + +\begin{proposition}\label{img_inter} + % Equality does not hold in general + $\img{R}{A\inter B}\subseteq \img{R}{A}\inter\img{R}{B}$. +\end{proposition} +\begin{proof} + Follows by \cref{img_iff,subseteq,inter}. +\end{proof} + +\begin{proposition}\label{img_setminus} + % Equality does not hold in general + $\img{R}{A\setminus B}\supseteq \img{R}{A}\setminus\img{R}{B}$. +\end{proposition} +\begin{proof} + Follows by \cref{img_iff,subseteq,setminus}. +\end{proof} + +\begin{proposition}\label{img_singleton_iff} + $b\in \img{R}{\{a\}}$ iff $a\mathrel{R}b$. +\end{proposition} + +\begin{proposition}\label{img_singleton_intro} + Suppose $b\in\img{R}{\{a\}}$. + Then $b\in\ran{R}$ and $(a,b)\in R$. +\end{proposition} +\begin{proof} + Follows by \cref{img_iff,singleton_iff,img_subseteq_ran,elem_subseteq}. +\end{proof} + +\begin{proposition}\label{img_singleton} + $\img{R}{\{a\}} = \{b\in\ran{R}\mid (a,b)\in R \}$. +\end{proposition} + +\begin{proposition}\label{img_emptyset} + $\img{R}{\emptyset} = \emptyset$. +\end{proposition} +\begin{proof} + Follows by set extensionality. +\end{proof} + +\subsection{Preimage} + +\begin{definition}\label{preimg} + $\preimg{R}{B} = \{a\in\dom{R} \mid \exists b\in B. a\mathrel{R} b \}$. +\end{definition} + +\begin{proposition}\label{preimg_iff} + $a\in\preimg{R}{B}$ iff there exists $b\in B$ such that $a\mathrel{R} b$. +\end{proposition} + +\begin{proposition}\label{preim_eq_img_of_converse} + $\preimg{R}{B} = \img{\converse{R}}{B}$. +\end{proposition} +\begin{proof} + Follows by set extensionality. +\end{proof} + +\begin{proposition}\label{preimg_subseteq} + Suppose $A\subseteq B$. + Then $\preimg{R}{A}\subseteq \preimg{R}{B}$. +\end{proposition} + +\begin{proposition}\label{preimg_subseteq_dom} + Then $\preimg{R}{A}\subseteq \dom{R}$. +\end{proposition} + +\begin{proposition}\label{preimg_union} + $\preimg{R}{A\union B} = \preimg{R}{A}\union\preimg{R}{B}$. +\end{proposition} +\begin{proof} + Follows by set extensionality. +\end{proof} + +\begin{proposition}\label{preimg_inter} + % Equality does not hold in general + $\preimg{R}{A\inter B}\subseteq \preimg{R}{A}\inter\preimg{R}{B}$. +\end{proposition} + +\begin{proposition}\label{preimg_setminus} + % Equality does not hold in general + $\preimg{R}{A\setminus B}\supseteq \preimg{R}{A}\setminus\preimg{R}{B}$. +\end{proposition} + +\subsection{Upward and downward closure} + +\begin{definition}\label{upward_closure} + $\upward{R}{a} = \{b\in\ran{R} \mid a\mathrel{R}b \}$. +\end{definition} + +\begin{definition}\label{downward_closure} + $\downward{R}{b} = \{a\in\dom{R} \mid a\mathrel{R}b \}$. +\end{definition} + +\begin{proposition}\label{downward_closure_iff} + $a\in\downward{R}{b}$ iff $a\mathrel{R}b$. +\end{proposition} + +\subsection{Relation (and later also function) composition} + +Composition ignores the non-relational parts of sets. +Note that the order is flipped from usual relation composition. +This lets us use the same symbol for composition of functions. + +\begin{definition}\label{circ} + $S\circ R = \{ (x,z)\mid x\in\dom{R}, z\in\ran{S}\mid \exists y.\ x\mathrel{R}y\mathrel{S}z \}$. +\end{definition} + +\begin{proposition}\label{circ_is_relation} + $S\circ R$ is a relation. +\end{proposition} + +\begin{proposition}\label{circ_elem_intro} + Suppose $x\mathrel{R} y\mathrel{S} z$. + Then $x\mathrel{(S\circ R)} z$. +\end{proposition} +\begin{proof} + $x\in\dom{R}$ and $z\in\ran{S}$. + Then $(x, z)\in S\circ R$ by \cref{circ}. +\end{proof} + +\begin{proposition}\label{circ_elem_elim} + Suppose $x\mathrel{(S\circ R)} z$. + Then there exists $y$ such that $x\mathrel{R} y\mathrel{S} z$. +\end{proposition} +\begin{proof} + %$x\in\dom{R}$ and $z\in\ran{S}$. + There exists $y$ such that $x\mathrel{R} y\mathrel{S} z$ by \cref{circ,pair_eq_iff}. +\end{proof} + +\begin{proposition}\label{circ_iff} + $x\mathrel{(S\circ R)} z$ iff there exists $y$ such that $x\mathrel{R} y\mathrel{S} z$. +\end{proposition} + +\begin{proposition}\label{circ_assoc} + $(T\circ S)\circ R = T\circ (S\circ R)$. +\end{proposition} +\begin{proof} + For all $a, b$ we have + $(a,b)\in (T\circ S)\circ R$ iff $(a,b)\in T\circ (S\circ R)$ + by \cref{circ_iff}. + Now $(T\circ S)\circ R$ is a relation and $T\circ (S\circ R)$ is a relation by + \cref{circ_is_relation}. + Follows by \hyperref[relext]{relation extensionality}. +\end{proof} + +\begin{proposition}\label{circ_converse_intro_tuple} + Suppose $(a, c) \in\converse{R}\circ\converse{S}$. + Then $(a,c)\in \converse{(S\circ R)}$. +\end{proposition} +\begin{proof} + Take $b$ such that $a\mathrel{\converse{S}} b\mathrel{\converse{R}} c$. + Now $c\mathrel{R}b\mathrel{S} a$ by \cref{converse_iff}. + Hence $c\mathrel{(S\circ R)} a$. + Thus $a\mathrel{\converse{(S\circ R)}} c$. +\end{proof} + +\begin{proposition}\label{circ_converse_elim} + Suppose $(a,c)\in \converse{(S\circ R)}$. + Then $(a, c) \in\converse{R}\circ\converse{S}$. +\end{proposition} +\begin{proof} + $c\mathrel{(S\circ R)} a$. + Take $b$ such that $c\mathrel{R}b\mathrel{S} a$. + Now $a\mathrel{\converse{S}} b\mathrel{\converse{R}} c$. +\end{proof} + +\begin{proposition}\label{circ_converse} + $\converse{(S\circ R)} = \converse{R}\circ\converse{S}$. +\end{proposition} +\begin{proof} + $\converse{(S\circ R)}$ is a relation. + $\converse{R}\circ\converse{S}$ is a relation. + For all $x, y $ we have $(x,y)\in \converse{(S\circ R)}$ iff $(x, y) \in\converse{R}\circ\converse{S}$. + Thus $\converse{(S\circ R)} = \converse{R}\circ\converse{S}$ by \cref{relext}. +\end{proof} + +\subsection{Restriction} + +\begin{definition}% +\label{restrl} + $\restrl{R}{X} = \{ w\in R \mid \exists x, y. x\in X \land w = (x, y) \}$. +\end{definition} + +\begin{proposition}\label{restrl_iff} + $a \mathrel{\restrl{R}{X}} b$ iff $a\mathrel{R}b$ and $a\in X$. +\end{proposition} + +\begin{proposition}\label{restrl_subseteq} + $\restrl{R}{X}\subseteq R$. +\end{proposition} + +\begin{proposition}% +\label{elem_dom_of_restrl_implies_elem_dom_and_restr} + Suppose $x\in \dom{\restrl{R}{X}}$. + Then $x\in \dom{R}, X$. +\end{proposition} +\begin{proof} + Take $y$ such that $x\in X$ and $(x, y)\in \restrl{R}{X}$. + Then $(x, y)\in R$. Thus $x\in\dom{R}$. +\end{proof} + +\begin{proposition}% +\label{elem_dom_and_restr_implies_elem_of_restr} + Suppose $x\in \dom{R}, X$. + Then $x\in \dom{\restrl{R}{X}}$. +\end{proposition} +\begin{proof} + Take $y$ such that $(x, y)\in R$ by \cref{dom_iff}. + Then $(x, y)\in \restrl{R}{X}$. + Thus $x\in\dom{\restrl{R}{X}}$. +\end{proof} + +\begin{proposition}\label{restrl_eq_inter} + Suppose $R$ is a relation. + $\restrl{R}{X} = R\inter (X\times \ran{R})$. +\end{proposition} +\begin{proof} + For all $a$ we have $a\in R\inter (X\times \ran{R})$ iff $a\in \restrl{R}{X}$ + by \cref{inter,restrl,ran_iff,times_elem_is_tuple,times_tuple_intro}. + Follows by \hyperref[setext]{extensionality}. +\end{proof} + +\begin{corollary}% +\label{dom_of_restrl_eq_inter} + Suppose $R$ is a relation. + $\dom{\restrl{R}{X}} = \dom{R}\inter X$. +\end{corollary} +\begin{proof} + Follows by set extensionality. +\end{proof} + +\begin{proposition}\label{restrl_restrl} + Suppose $V\subseteq U$. + Then $\restrl{\restrl{R}{U}}{V} = \restrl{R}{V}$. +\end{proposition} +\begin{proof} + For all $w$ we have $w\in\restrl{\restrl{R}{U}}{V}$ iff $w\in\restrl{R}{V}$ + by \cref{restrl,subseteq}. + Follows by \hyperref[setext]{extensionality}. +\end{proof} + +\begin{proposition}\label{restrl_by_dom} + Let $R$ be a relation. + Then $\restrl{R}{\dom{R}} = R$. +\end{proposition} +\begin{proof} + For all $w$ we have $w\in\restrl{R}{\dom{R}}$ iff $w\in R$ + by \cref{dom,restrl,relation}. + Follows by \hyperref[setext]{extensionality}. +\end{proof} + +\begin{proposition}\label{restrl_dom} + Then $\dom{\restrl{R}{X}}\subseteq X$. +\end{proposition} + +\begin{proposition}\label{restrl_ran_elim} + Suppose $X\subseteq\dom{R}$. + Let $b\in\ran{\restrl{R}{X}}$. + Then $b\in\img{R}{X}$. +\end{proposition} +\begin{proof} + Take $a\in X$ such that $(a, b)\in \restrl{R}{X}$ + by \cref{dom,ran,restrl_dom,subseteq}. + Then $a\mathrel{R} b$ and $b\in\ran{R}$. + Thus $b\in\img{R}{X}$ by \cref{img}. +\end{proof} + +\begin{proposition}\label{restrl_ran_intro} + Suppose $X\subseteq\dom{R}$. + Let $b\in\img{R}{X}$. + Then $b\in\ran{\restrl{R}{X}}$. +\end{proposition} +\begin{proof} + Follows by \cref{img,ran_intro,restrl_iff}. +\end{proof} + +\begin{proposition}\label{restrl_ran} + Suppose $X\subseteq\dom{R}$. + Then $\ran{\restrl{R}{X}} = \img{R}{X}$. +\end{proposition} +\begin{proof} + Follows by set extensionality. +\end{proof} + +\begin{proposition}\label{restrl_img} + Suppose $X\subseteq\dom{R}$. + Then $\img{\restrl{R}{X}}{A} = \img{R}{X\inter A}$. +\end{proposition} +\begin{proof} + For all $b$ we have $b\in\img{\restrl{R}{X}}{A}$ iff $b\in \img{R}{X\inter A}$ + by \cref{restrl_iff,img_iff,inter}. + Follows by \hyperref[setext]{extensionality}. + %Follows by set extensionality. +\end{proof} + + + +\subsection{Set of relations} + +% Also called "homogeneous relation" or "endorelation". +\begin{abbreviation}\label{binary_relation_on} + $R$ is a binary relation on $X$ iff $R\subseteq X\times X$. +\end{abbreviation} + +\begin{proposition}\label{relation_subseteq_intro_elem} + Let $R$ be a relation. + Suppose $\ran{R}\subseteq B$. + Suppose $\dom{R}\subseteq A$. + Suppose $w\in R$. + Then $w\in A\times B$. +\end{proposition} +\begin{proof} + Take $a, b$ such that $(a, b) = w$. + Then $a\in\dom{R}$ and $b\in\ran{R}$. + Thus $a\in A$ and $b\in B$. + Thus $(a, b)\in A\times B$. +\end{proof} + +\begin{proposition}\label{relation_subseteq_intro} + Let $R$ be a relation. + Suppose $\ran{R}\subseteq B$. + Suppose $\dom{R}\subseteq A$. + Then $R\subseteq A\times B$. +\end{proposition} + +\begin{proposition}\label{relation_subseteq_implies_dom_subseteq_elem} + Suppose $R\subseteq A\times B$. + Suppose $a\in\dom{R}$. + Then $a\in A$. +\end{proposition} +\begin{proof} + Take $w, b$ such that $w\in R$ and $w = (a, b)$. + Follows by \cref{dom,times_tuple_elim,elem_subseteq}. +\end{proof} + +\begin{proposition}\label{relation_subseteq_implies_dom_subseteq} + Suppose $R\subseteq A\times B$. + Then $\dom{R}\subseteq A$. +\end{proposition} +\begin{proof} + Follows by \cref{subseteq,relation_subseteq_implies_dom_subseteq_elem}. +\end{proof} + +\begin{proposition}\label{relation_subseteq_implies_ran_subseteq_elem} + Suppose $R\subseteq A\times B$. + Suppose $b\in\ran{R}$. + Then $b\in B$. +\end{proposition} +\begin{proof} + Take $w, a$ such that $w\in R$ and $w = (a, b)$. + Follows by \cref{ran,elem_subseteq,times_tuple_elim}. +\end{proof} + +\begin{proposition}\label{relation_subseteq_implies_ran_subseteq} + Suppose $R\subseteq A\times B$. + Then $\ran{R}\subseteq B$. +\end{proposition} +\begin{proof} + Follows by \cref{subseteq,relation_subseteq_implies_ran_subseteq_elem}. +\end{proof} + +\begin{definition}\label{rels} + $\rels{A}{B} = \pow{A\times B}$. +\end{definition} + +\begin{proposition}\label{rels_intro} + Suppose $R\subseteq A\times B$. + Then $R\in\rels{A}{B}$. +\end{proposition} + +\begin{proposition}\label{rels_intro_dom_and_ran} + Let $R$ be a relation. + Suppose $\dom{R}\subseteq A$. + Suppose $\ran{R}\subseteq B$. + Then $R\in\rels{A}{B}$. +\end{proposition} +\begin{proof} + $R\subseteq A\times B$. +\end{proof} + +\begin{proposition}\label{rels_elim} + Suppose $R\in\rels{A}{B}$. + Then $R\subseteq A\times B$. +\end{proposition} + +\begin{proposition}\label{rels_dom_subseteq} + Suppose $R\in\rels{A}{B}$. + Then $\dom{R}\subseteq A$. +\end{proposition} +\begin{proof} + Follows by \cref{rels_elim,relation_subseteq_implies_dom_subseteq}. +\end{proof} + +\begin{proposition}\label{rels_ran_subseteq} + Suppose $R\in\rels{A}{B}$. + Then $\ran{R}\subseteq B$. +\end{proposition} +\begin{proof} + Follows by \cref{rels_elim,relation_subseteq_implies_ran_subseteq}. +\end{proof} + +\begin{proposition}\label{rels_is_relation} + Let $R\in\rels{A}{B}$. + Then $R$ is a relation. +\end{proposition} +\begin{proof} + It suffices to show that for all $w\in R$ there exists $x, y$ such that $w = (x, y)$. + Fix $w\in R$. + Now $R\subseteq A\times B$ by \cref{rels_elim}. + Thus $w\in A\times B$. +\end{proof} + +\begin{proposition}\label{rels_weaken_dom} + Let $R\in\rels{A}{B}$. + Suppose $A\subseteq C$. + Then $R\in\rels{C}{B}$. +\end{proposition} +\begin{proof} + $R\subseteq A\times B\subseteq C\times B$. + Thus $R\subseteq C\times B$. +\end{proof} + +\begin{proposition}\label{rels_weaken_codom} + Let $R\in\rels{A}{B}$. + Suppose $B\subseteq D$. + Then $R\in\rels{A}{D}$. +\end{proposition} +\begin{proof} + $R\subseteq A\times B\subseteq A\times D$. + Thus $R\subseteq A\times D$. +\end{proof} + +\begin{proposition}\label{rels_type} + Let $R\in\rels{A}{B}$. + Suppose $(a,b)\in R$. + Then $(a,b)\in A\times B$. +\end{proposition} +\begin{proof} + $R\subseteq A\times B$ by \cref{rels_elim}. +\end{proof} + +\begin{proposition}\label{rels_type_dom} + Let $R\in\rels{A}{B}$. + Suppose $(a,b)\in R$. + Then $a\in A$. +\end{proposition} +\begin{proof} + $(a,b)\in A\times B$ by \cref{rels_type}. +\end{proof} + +\begin{proposition}\label{rels_type_ran} + Let $R\in\rels{A}{B}$. + Suppose $(a,b)\in R$. + Then $b\in B$. +\end{proposition} +\begin{proof} + $(a,b)\in A\times B$ by \cref{rels_type}. +\end{proof} + +\begin{proposition}\label{rels_restrict_dom} + Let $R\in\rels{A}{B}$. + Then $R\in\rels{\dom{R}}{B}$. +\end{proposition} +\begin{proof} + $R$ is a relation by \cref{rels_is_relation}. + $\dom{R}\subseteq \dom{R}$ by \cref{subseteq_refl}. + $\ran{R}\subseteq B$. + Follows by \cref{rels_intro_dom_and_ran}. +\end{proof} + +\begin{proposition}\label{rels_restrict_ran} + Let $R\in\rels{A}{B}$. + Then $R\in\rels{A}{\ran{R}}$. +\end{proposition} +\begin{proof} + $R$ is a relation by \cref{rels_is_relation}. + $\dom{R}\subseteq A$. + $\ran{R}\subseteq \ran{R}$ by \cref{subseteq_refl}. + Follows by \cref{rels_intro_dom_and_ran}. +\end{proof} + +\subsection{Identity relation} + +\begin{definition}\label{id} + $\identity{A} = \{(a,a)\mid a\in A\}$. +\end{definition} + +\begin{proposition}\label{id_iff} + $a\mathrel{\identity{A}}b$ iff $a = b\in A$. +\end{proposition} +\begin{proof} + Follows by \cref{id,pair_eq_iff}. +\end{proof} + +\begin{proposition}\label{id_elem_intro} + Suppose $a\in A$. + Then $(a, a) \in\identity{A}$. +\end{proposition} +\begin{proof} + Follows by \cref{id}. +\end{proof} + +\begin{proposition}\label{id_elem_inspect} + Suppose $w\in\identity{A}$. + Then there exists $a\in A$ such that $w = (a, a)$. +\end{proposition} +\begin{proof} + Follows by \cref{id}. +\end{proof} + +\begin{proposition}\label{id_is_relation} + $\identity{A}$ is a relation. +\end{proposition} + +\begin{proposition}\label{id_dom} + $\dom{\identity{A}} = A$. +\end{proposition} +\begin{proof} + For every $a\in A$ we have $(a, a)\in \identity{A}$. + $\dom{\identity{A}} = A$ by set extensionality. +\end{proof} + +\begin{proposition}\label{id_ran} + $\ran{\identity{A}} = A$. +\end{proposition} +\begin{proof} + For every $a$ we have $a\in \ran{\identity{A}}$ iff $a\in A$ + by \cref{ran_iff,id_iff}. + For every $a\in A$ we have $(a, a)\in \identity{A}$. + $\ran{\identity{A}} = A$ by set extensionality. +\end{proof} + +\begin{proposition}\label{id_img} + $\img{\identity{A}}{B} = A\inter B$. +\end{proposition} +\begin{proof} + Follows by set extensionality. +\end{proof} + +\begin{proposition}\label{id_elem_rels} + $\identity{A}\in\rels{A}{A}$. +\end{proposition} + +\subsection{Membership relation} + +\begin{definition}\label{memrel} + $\memrel{A} = \{(a, b)\mid a\in A, b\in A \mid a\in b\}$. +\end{definition} + +\begin{proposition}\label{memrel_elem_intro} + Suppose $a, b\in A$. + Suppose $a\in b$. + Then $(a, b) \in\memrel{A}$. +\end{proposition} + +\begin{proposition}\label{memrel_elem_inspect} + Suppose $w\in\memrel{A}$. + Then there exists $a, b\in A$ such that $w = (a, b)$ and $a\in b$. +\end{proposition} +\begin{proof} + Follows by \cref{memrel}. +\end{proof} + +\begin{proposition}\label{memrel_is_relation} + $\memrel{A}$ is a relation. +\end{proposition} + +\subsection{Subset relation} + +\begin{definition}\label{subseteqrel} + $\subseteqrel{A} = \{(a, b)\mid a\in A, b\in A \mid a\subseteq b\}$. +\end{definition} + +\begin{proposition}\label{subseteqrel_is_relation} + $\subseteqrel{A}$ is a relation. +\end{proposition} -- cgit v1.2.3