From 442d732696ad431b84f6e5c72b6ee785be4fd968 Mon Sep 17 00:00:00 2001 From: adelon <22380201+adelon@users.noreply.github.com> Date: Sat, 10 Feb 2024 02:22:14 +0100 Subject: Initial commit --- library/relation/closure.tex | 28 ++++ library/relation/equivalence.tex | 271 +++++++++++++++++++++++++++++++++++++++ library/relation/properties.tex | 202 +++++++++++++++++++++++++++++ library/relation/uniqueness.tex | 81 ++++++++++++ 4 files changed, 582 insertions(+) create mode 100644 library/relation/closure.tex create mode 100644 library/relation/equivalence.tex create mode 100644 library/relation/properties.tex create mode 100644 library/relation/uniqueness.tex (limited to 'library/relation') diff --git a/library/relation/closure.tex b/library/relation/closure.tex new file mode 100644 index 0000000..8eebf08 --- /dev/null +++ b/library/relation/closure.tex @@ -0,0 +1,28 @@ +\import{relation/properties.tex} +\import{relation/equivalence.tex} + +\subsection{Closure operations on relations} + +\begin{definition}\label{reflexive_closure} + $\reflexiveClosure{X}{R} = R\union\identity{X}$. +\end{definition} + +% reflexive closure of R is the smallest reflexive relation containing R +\begin{proposition}\label{reflexive_closure_is_reflexive} + $\reflexiveClosure{X}{R}$ is reflexive on $X$. +\end{proposition} + +\begin{definition}\label{reflexive_reduction} + $\reflexiveReduction{X}{R} = R\setminus\identity{X}$. +\end{definition} + +\begin{definition}\label{symmetric_closure} + $\symmetricClosure{R} = R\union\converse{R}$. +\end{definition} + + +% LATER transitive closure + +% LATER reflexive transitive closure + +% LATER equivalence closure diff --git a/library/relation/equivalence.tex b/library/relation/equivalence.tex new file mode 100644 index 0000000..bda8486 --- /dev/null +++ b/library/relation/equivalence.tex @@ -0,0 +1,271 @@ +\import{set.tex} +\import{set/partition.tex} +\import{relation.tex} +\import{order/quasiorder.tex} + + +\subsection{Equivalences} + +% Sometimes also called "restricted equivalence". +\begin{abbreviation}\label{partialequivalence} + $E$ is a partial equivalence iff + $E$ is transitive and symmetric. +\end{abbreviation} + +\begin{proposition}\label{partialequivalence_is_quasireflexive} + Let $E$ be a partial equivalence. + Then $E$ is quasireflexive. +\end{proposition} + +\begin{abbreviation}\label{equivalence} + $E$ is an equivalence iff + $E$ is a symmetric quasiorder. +\end{abbreviation} + +\begin{abbreviation}\label{equivalence_on} + $E$ is an equivalence on $A$ iff + $E$ is a symmetric quasiorder on $A$. +\end{abbreviation} + +\begin{proposition}\label{inters_of_family_of_equivalences_is_equivalence} + Let $F$ be a family of relations. + Suppose every element of $F$ is an equivalence. + Then $\inters{F}$ is an equivalence. +\end{proposition} +\begin{proof} + $\inters{F}$ is quasireflexive by \cref{quasireflexive,inters_destr,inters_iff_forall}. + $\inters{F}$ is symmetric by \cref{symmetric,inters_iff_forall,inters_destr}. + $\inters{F}$ is transitive by \cref{transitive,inters_iff_forall,inters_destr}. +\end{proof} + +\begin{proposition}\label{inters_of_family_of_equivalences_on_a_set_is_equivalence_on_that_set} + Let $F$ be an inhabited family of relations. + Suppose every element of $F$ is an equivalence on $A$. + Then $\inters{F}$ is an equivalence on $A$. +\end{proposition} +\begin{proof} + $\inters{F}$ is reflexive on $A$ by \cref{inters_of_family_of_reflexive_relations_is_reflexive}. + $\inters{F}$ is symmetric. + $\inters{F}$ is transitive. +\end{proof} +% NOTE: the union of a family of equivalence relations is not necessarily an +% equivalence relation because a binary union of transitive relations is not +% necessarily transitive. + + +\subsubsection{Equivalence classes} + +\begin{abbreviation}\label{equiv_class} + $\equivalenceClass{E}{a} = \downward{E}{a}$. +\end{abbreviation} + +\begin{abbreviation}\label{equivclass_abbr} + The $E$-equivalence class of $a$ is $\equivalenceClass{E}{a}$. +\end{abbreviation} + +\begin{proposition}\label{equivclasses_inhabited} + Let $E$ be an equivalence. + Let $a\in \fld{E}$. + Then $a\in\equivalenceClass{E}{a}$. +\end{proposition} +\begin{proof} + $a\mathrel{E} a$ by \cref{reflexive_on,quasireflexive_implies_reflexive_on_fld}. +\end{proof} + +\begin{proposition}\label{equivclasses_inhabited_equivalenceon} + Let $E$ be an equivalence on $A$. + Let $a\in A$. + Then $a\in\equivalenceClass{E}{a}$. +\end{proposition} +\begin{proof} + $a\mathrel{E} a$ by \cref{reflexive_on}. +\end{proof} + +\begin{proposition}\label{equiv_implies_equivanlence_classes_eq} + Let $E$ be an equivalence on $A$. + Let $a, b\in A$. + Suppose $a\mathrel{E} b$. + Then $\equivalenceClass{E}{a} = \equivalenceClass{E}{b}$. +\end{proposition} +\begin{proof} + Follows by set extensionality. +\end{proof} + +\begin{proposition}\label{equivclasses_eq_implies_equiv} + Let $E$ be an equivalence on $A$. + Let $a, b\in A$. + Suppose $\equivalenceClass{E}{a} = \equivalenceClass{E}{b}$. + Then $a\mathrel{E} b$. +\end{proposition} + +\begin{proposition}\label{equiv_iff_equivclasses_eq} + Let $E$ be an equivalence on $A$. + Let $a, b\in A$. + Then $a\mathrel{E} b$ iff $\equivalenceClass{E}{a} = \equivalenceClass{E}{b}$. +\end{proposition} + +\begin{proposition}\label{equivclasses_diseq_implies_disjoint} + Let $E$ be a partial equivalence. + Suppose $\equivalenceClass{E}{a}\neq \equivalenceClass{E}{b}$. + Then $\equivalenceClass{E}{a}$ is disjoint from $\equivalenceClass{E}{b}$. +\end{proposition} +\begin{proof} + Suppose not. + Take $c$ such that $c\in \equivalenceClass{E}{a},\equivalenceClass{E}{b}$. + Then $c\mathrel{E} a$ and + $c\mathrel{E} b$. + $E$ is symmetric. + Thus $a\mathrel{E} c$ by \hyperref[symmetric]{symmetry}. + $E$ is transitive. + Thus $a\mathrel{E} b$ by \hyperref[transitive]{transitivity}. + Then $b\mathrel{E} a$ by \hyperref[symmetric]{symmetry}. + % + Thus $a\in \equivalenceClass{E}{b}$ and $b\in \equivalenceClass{E}{a}$ + by \cref{downward_closure_iff}. + Hence $\equivalenceClass{E}{a}\subseteq \equivalenceClass{E}{b}\subseteq \equivalenceClass{E}{a}$ + by \cref{transitive_downward_subseteq}. + Contradiction by \cref{subseteq_antisymmetric}. +\end{proof} + +\begin{corollary}\label{equivalence_equivclasses_diseq_implies_disjoint} + Let $E$ be an equivalence. + Suppose $\equivalenceClass{E}{a}\neq \equivalenceClass{E}{b}$. + Then $\equivalenceClass{E}{a}$ is disjoint from $\equivalenceClass{E}{b}$. +\end{corollary} +\begin{proof} + Follows by \cref{equivclasses_diseq_implies_disjoint}. +\end{proof} + +\begin{corollary}\label{equivalenceon_equivclasses_diseq_implies_disjoint} + Let $E$ be an equivalence on $A$. + Suppose $\equivalenceClass{E}{a}\neq \equivalenceClass{E}{b}$. + Then $\equivalenceClass{E}{a}$ is disjoint from $\equivalenceClass{E}{b}$. +\end{corollary} +\begin{proof} + Follows by \cref{equivclasses_diseq_implies_disjoint}. +\end{proof} + + +\subsubsection{Quotients} + +\begin{definition}\label{quotient} + $\quotient{A}{E} = \{\equivalenceClass{E}{a}\mid a\in A\}$. +\end{definition} + +%\begin{definition}\label{equivalenceclasses} +% $\equivalenceClasses{E} = \{\equivalenceClass{E}{a}\mid a\in\dom{E}\}$. +%\end{definition} + +\begin{proposition}\label{quotient_emptyset} + $\quotient{\emptyset}{\emptyset} = \emptyset$. +\end{proposition} + + +\begin{proposition}\label{quotient_elems_disjoint} + Let $E$ be an equivalence on $A$. + Suppose $B,C\in\quotient{A}{E}$ and $B\neq C$. + Then $B$ is disjoint from $C$. +\end{proposition} +\begin{proof} + Take $b$ such that $B = \equivalenceClass{E}{b}$. + Take $c$ such that $C = \equivalenceClass{E}{c}$. + Then $B$ is disjoint from $C$ by \cref{equivalenceon_equivclasses_diseq_implies_disjoint}. +\end{proof} + +\begin{proposition}\label{quotient_elems_inhabited} + Let $E$ be an equivalence on $A$. + Suppose $C\in\quotient{A}{E}$. + Then $C$ is inhabited. +\end{proposition} +\begin{proof} + Take $a\in A$ such that $C = \equivalenceClass{E}{a}$. + Then $a\in \equivalenceClass{E}{a}$. + $C$ is inhabited by \cref{quotient,inhabited,equivclasses_inhabited}. +\end{proof} + +\begin{proposition}\label{quotient_elems_type} + Let $E$ be an equivalence on $A$. + Suppose $a\in C\in\quotient{A}{E}$. + Then $a\in A$. +\end{proposition} +\begin{proof} + Take $b\in A$ such that $C = \equivalenceClass{E}{b}$ + by \cref{quotient}. + Then $a\mathrel{E} b$. + Thus $a\in A$ by \cref{times_tuple_elim,subseteq}. +\end{proof} + + +\begin{corollary}\label{quotient_notni_emptyset} + Let $E$ be an equivalence on $A$. + $\emptyset\notin\quotient{A}{E}$. +\end{corollary} + +\begin{proposition}\label{quotient_partition} + Let $E$ be an equivalence on $A$. + $\quotient{A}{E}$ is a partition. +\end{proposition} +\begin{proof} + $\emptyset\notin\quotient{A}{E}$. + For all $B, C\in \quotient{A}{E}$ such that $B\neq C$ we have $B$ is disjoint from $C$. +\end{proof} + +\begin{proposition}\label{quotient_partition_of} + Let $E$ be an equivalence on $A$. + $\quotient{A}{E}$ is a partition of $A$. +\end{proposition} +\begin{proof} + $\unions{(\quotient{A}{E})} = A$ by set extensionality. +\end{proof} + + + +\begin{definition}\label{equivalence_from_partition} + $\equivfrompartition{P} = \{(a, b)\mid a\in A, b\in A\mid \exists C\in P.\ a, b\in C\}$. +\end{definition} + +\begin{proposition}\label{equivalence_from_partition_intro} + Let $P$ be a partition of $A$. + Let $a,b\in A$. + Suppose $a,b\in C\in P$. + Then $a\mathrel{\equivfrompartition{P}} b$. +\end{proposition} + +\begin{proposition}\label{equivalence_from_partition_reflexive} + Let $P$ be a partition of $A$. + $\equivfrompartition{P}$ is reflexive on $A$. +\end{proposition} + +\begin{proposition}\label{equivalence_from_partition_symmetric} + Let $P$ be a partition. + $\equivfrompartition{P}$ is symmetric. +\end{proposition} +\begin{proof} + Follows by \cref{symmetric,equivalence_from_partition,notin_emptyset}. +\end{proof} + +\begin{proposition}\label{equivalence_from_partition_transitive} + Let $P$ be a partition. + $\equivfrompartition{P}$ is transitive. +\end{proposition} + +\begin{proposition}\label{equivalence_from_partition_is_equivalence} + Let $P$ be a partition of $A$. + $\equivfrompartition{P}$ is an equivalence on $A$. +\end{proposition} + +\begin{proposition}\label{equivalence_from_quotient} + Let $E$ be an equivalence on $A$. + Then $\equivfrompartition{\quotient{A}{E}} = E$. +\end{proposition} +\begin{proof} + Follows by set extensionality. +\end{proof} + +\begin{proposition}\label{partition_eq_quotient_by_equivalence_from_partition} + Let $P$ be a partition of $A$. + Then $\quotient{A}{\equivfrompartition{P}} = P$. +\end{proposition} +\begin{proof} + Follows by set extensionality. +\end{proof} diff --git a/library/relation/properties.tex b/library/relation/properties.tex new file mode 100644 index 0000000..191b7c0 --- /dev/null +++ b/library/relation/properties.tex @@ -0,0 +1,202 @@ +\import{set.tex} +\import{relation.tex} + +\subsection{Properties of relations} + +\begin{definition}\label{left_quasireflexive} + $R$ is left quasireflexive iff + for all $x, y$ such that $x\mathrel{R} y$ + we have $x\mathrel{R}x$. +\end{definition} + +\begin{definition}\label{right_quasireflexive} + $R$ is right quasireflexive iff + for all $x, y$ such that $x\mathrel{R} y$ + we have $y\mathrel{R}y$. +\end{definition} + +\begin{definition}\label{quasireflexive} + $R$ is quasireflexive iff + for all $x, y$ such that $x\mathrel{R} y$ + we have $x\mathrel{R}x$ and $y\mathrel{R}y$. +\end{definition} + +\begin{definition}\label{coreflexive} + $R$ is coreflexive iff + for all $x, y$ such that $x\mathrel{R} y$ + we have $x = y$. +\end{definition} + +\begin{definition}\label{reflexive_on} + $R$ is reflexive on $X$ iff + for all $x\in X$ + we have $x\mathrel{R}x$. +\end{definition} + +\begin{definition}\label{irreflexive} + $R$ is irreflexive iff + for all $x$ we have $(x,x)\notin R$. +\end{definition} + + +\begin{proposition}\label{quasireflexive_implies_reflexive_on_fld} + Suppose $R$ is quasireflexive. + Then $R$ is reflexive on $\fld{R}$. +\end{proposition} + +\begin{proposition}\label{reflexive_on_fld_impliesquasireflexive} + Suppose $R$ is reflexive on $\fld{R}$. + Then $R$ is quasireflexive. +\end{proposition} + +\begin{proposition}\label{inters_of_family_of_reflexive_relations_is_reflexive} + Let $F$ be an inhabited family of relations. + Suppose every element of $F$ is reflexive on $A$. + Then $\inters{F}$ is reflexive on $A$. +\end{proposition} +\begin{proof} + For all $a\in A$ we have for all $R\in F$ we have $a\mathrel{R} a$. + Thus for all $a\in A$ we have $a\mathrel{(\inters{F})} a$. +\end{proof} + +\begin{definition}\label{antisymmetric} + $R$ is antisymmetric iff + for all $x, y$ such that $x\mathrel{R}y\mathrel{R}x$ + we have $x = y$. +\end{definition} + +\begin{definition}[Symmetry]\label{symmetric} + $R$ is symmetric iff + for all $x, y$ we have + $x\mathrel{R} y \iff y\mathrel{R}x$. +\end{definition} + +\begin{definition}\label{asymmetric} + $R$ is asymmetric iff + for all $x, y$ such that + $x\mathrel{R} y$ we have $y\not\mathrel{R}x$. +\end{definition} + +\begin{proposition}\label{asymmetric_implies_irreflexive} + Suppose $R$ is asymmetric. + Then $R$ is irreflexive. +\end{proposition} + +\begin{proposition}\label{asymmetric_implies_antisymmetric} + Suppose $R$ is asymmetric. + Then $R$ is antisymmetric. +\end{proposition} + +\begin{proposition}\label{antisymmetric_and_irreflexive_implies_asymmetric} + Suppose $R$ is antisymmetric. + Suppose $R$ is irreflexive. + Then $R$ is asymmetric. +\end{proposition} + +% TODO +%\begin{proposition}\label{symmetric_relation_eq_converse} +% Let $R$ be a symmetric relation. +% Then $\converse{R} = R$. +%\end{proposition} +%\begin{proof} +% Follows by set extensionality. +%\end{proof} + +\begin{definition}[Transitivity]\label{transitive} + $R$ is transitive iff + for all $x, y, z$ such that $x\mathrel{R}y\mathrel{R}z$ + we have $x\mathrel{R} z$. +\end{definition} + +\begin{proposition}\label{transitive_downward_elem} + Suppose $R$ is transitive. + Suppose $a\in\downward{R}{b}$. + Suppose $c\in\downward{R}{a}$. + Then $c\in \downward{R}{b}$. +\end{proposition} +\begin{proof} + $c\mathrel{R} a\mathrel{R}b$. + Thus $c\mathrel{R} b$ by \hyperref[transitive]{transitivity}. +\end{proof} + +\begin{proposition}\label{transitive_downward_subseteq} + Suppose $R$ is transitive. + Suppose $a\in\downward{R}{b}$. + Then $\downward{R}{a}\subseteq \downward{R}{b}$. +\end{proposition} + +\begin{definition}\label{dense} + $R$ is dense iff + for all $x, z$ such that $x\mathrel{R}z$ + there exists $y$ such that $x\mathrel{R}y\mathrel{R}z$. +\end{definition} + +% Variation of connexity that does not depend on a carrier. +\begin{definition}\label{quasiconnex} + $R$ is quasiconnex iff + for all $x, y\in\fld{R}$ such that $x\neq y$ we have + $x\mathrel{R}y$ or $y\mathrel{R}x$. +\end{definition} + +% Also called "connected" (here reserved for topology), +% "complete" (heavily overloaded), and total" (also overloaded). +\begin{definition}\label{connex} + $R$ is connex on $X$ iff + for all $x, y\in X$ such that $x\neq y$ we have + $x\mathrel{R}y$ or $y\mathrel{R}x$. +\end{definition} + +\begin{definition}\label{strongly_quasiconnex} + $R$ is strongly quasiconnex iff + for all $x, y\in\fld{R}$ we have + $x\mathrel{R}y$ or $y\mathrel{R}x$. +\end{definition} + +\begin{definition}\label{strongly_connex} + $R$ is strongly connex on $X$ iff + for all $x, y\in X$ we have + $x\mathrel{R}y$ or $y\mathrel{R}x$. +\end{definition} + +%\begin{proposition}\label{strongly_quasiconnex_implies_quasiconnex_and_quasireflexive} +% Suppose $R$ is strongly quasiconnex. +% Then $R$ is quasiconnex and quasireflexive. +%\end{proposition} + +%\begin{proposition}\label{quasiconnex_and_quasireflexive_implies_strongly_quasiconnex} +% Suppose $R$ is quasiconnex and quasireflexive. +% Then $R$ is strongly quasiconnex. +%\end{proposition} + +\begin{proposition}\label{strongly_quasiconnex_iff_quasiconnex_and_quasireflexive} + $R$ is strongly quasiconnex iff + $R$ is quasiconnex and quasireflexive. +\end{proposition} +\begin{proof} + Follows by \cref{quasiconnex,strongly_quasiconnex,quasireflexive_implies_reflexive_on_fld,reflexive_on,fld,reflexive_on_fld_impliesquasireflexive}. +\end{proof} + +\begin{proposition}\label{connex_reaches_all_or_all_but_one} + Suppose $R$ is connex on $A$. + Let $a, b\in A\setminus\ran{R}$. + Then $a = b$. +\end{proposition} +\begin{proof} + Suppose not. + $a, b\in A$. + Then $(a, b)\in R$ or $(b,a)\in R$ by \cref{connex}. + $(a, b)\notin R$. + $(b, a)\notin R$. + Thus $a = b$. +\end{proof} + + +\begin{definition}\label{righteuclidean} + $R$ is right Euclidean iff + for all $a,b,c$ such that $a\mathrel{R}b,c$ we have $b\mathrel{R}c$. +\end{definition} + +\begin{definition}\label{lefteuclidean} + $R$ is left Euclidean iff + for all $a,b,c$ such that $a,b\mathrel{R}c$ we have $a\mathrel{R}b$. +\end{definition} diff --git a/library/relation/uniqueness.tex b/library/relation/uniqueness.tex new file mode 100644 index 0000000..68b01de --- /dev/null +++ b/library/relation/uniqueness.tex @@ -0,0 +1,81 @@ +\import{set.tex} +\import{relation.tex} + + +\subsection{Injective relations} + +% Injective relations are also called "left-unique" +\begin{definition}\label{injective} + $R$ is injective iff for all $a,a',b$ such that $a, a'\mathrel{R} b$ we have $a = a'$. +\end{definition} + +\begin{abbreviation}\label{leftunique} + $R$ is left-unique iff $R$ is injective. +\end{abbreviation} + +\begin{proposition}\label{subseteq_of_injective_is_injective} + Suppose $S\subseteq R$. + Suppose $R$ is injective. + Then $S$ is injective. +\end{proposition} + +\begin{proposition}\label{restrl_injective} + Suppose $R$ is injective. + Then $\restrl{R}{A}$ is injective. +\end{proposition} +\begin{proof} + $\restrl{R}{A}\subseteq R$. +\end{proof} + +\begin{proposition}\label{circ_injective} + Suppose $R$ and $S$ are injective. + Then $S\circ R$ is injective. +\end{proposition} + +\begin{proposition}\label{identity_injective} + Then $\identity{A}$ is injective. +\end{proposition} + +\subsection{Right-unique relations} + +% also called "functional" or "univalent" +\begin{definition}\label{rightunique} + $R$ is right-unique iff + for all $a,b,b'$ such that $a\mathrel{R} b, b'$ we have $b = b'$. +\end{definition} + +\begin{abbreviation}\label{onetoone} + $R$ is one-to-one iff $R$ is right-unique and injective. +\end{abbreviation} + +\begin{proposition}\label{subseteq_of_rightunique_is_rightunique} + Suppose $S\subseteq R$. + Suppose $R$ is right-unique. + Then $S$ is right-unique. +\end{proposition} + +\begin{proposition}\label{circ_rightunique} + Suppose $R$ and $S$ are right-unique. + Then $S\circ R$ is right-unique. +\end{proposition} + + + +\subsection{Left-total relations} + +\begin{definition}\label{lefttotal} + $R$ is left-total on $A$ iff + for all $a\in A$ there exists $b$ such that $a\mathrel{R} b$. +\end{definition} + + +\subsection{Right-total relations} + +\begin{definition}\label{righttotal} + $R$ is right-total on $B$ iff + for all $b\in B$ there exists $a$ such that $a\mathrel{R} b$. +\end{definition} + +\begin{abbreviation}\label{surjective} + $R$ is surjective on $B$ iff $R$ is right-total on $B$. +\end{abbreviation} -- cgit v1.2.3