From 3845ab9020b3eb591ef999827503b483eb735bd7 Mon Sep 17 00:00:00 2001 From: adelon <22380201+adelon@users.noreply.github.com> Date: Tue, 21 May 2024 16:52:01 +0200 Subject: Add simple lemmas on filters --- library/set.tex | 10 ++++++---- 1 file changed, 6 insertions(+), 4 deletions(-) (limited to 'library/set.tex') diff --git a/library/set.tex b/library/set.tex index 33e5af4..e7e062f 100644 --- a/library/set.tex +++ b/library/set.tex @@ -553,13 +553,15 @@ The $\operatorname{\textsf{cons}}$ operation is determined by the following axio Follows by set extensionality. \end{proof} -\begin{proposition}% -\label{inter_subseteq} +\begin{proposition}\label{inter_subseteq_left} $A\inter B\subseteq A$. \end{proposition} -\begin{proposition}% -\label{inter_emptyset} +\begin{proposition}\label{inter_subseteq_right} + $A\inter B\subseteq B$. +\end{proposition} + +\begin{proposition}\label{inter_emptyset} $A\inter\emptyset = \emptyset$. \end{proposition} \begin{proof} -- cgit v1.2.3 From a5deeef9c3214f0f2ccd90789f5344a88544d65b Mon Sep 17 00:00:00 2001 From: adelon <22380201+adelon@users.noreply.github.com> Date: Sat, 25 May 2024 01:21:17 +0200 Subject: Prove `emptyset_open` to replace structure axiom --- library/set.tex | 6 ++---- library/topology/topological-space.tex | 10 +++++++++- 2 files changed, 11 insertions(+), 5 deletions(-) (limited to 'library/set.tex') diff --git a/library/set.tex b/library/set.tex index e7e062f..fcd2642 100644 --- a/library/set.tex +++ b/library/set.tex @@ -131,8 +131,7 @@ which applies it to goals of the form “$A = B$” and “$A \neq B$”. If $x$ and $y$ are empty, then $x = y$. \end{proposition} -\begin{proposition}% -\label{emptyset_subseteq} +\begin{proposition}\label{emptyset_subseteq} For all $a$ we have $\emptyset \subseteq a$. % LATER $\emptyset$ is a subset of every set. \end{proposition} @@ -266,8 +265,7 @@ The $\operatorname{\textsf{cons}}$ operation is determined by the following axio There exists $B\in C$ such that $A\in B$. \end{proof} -\begin{proposition}% -\label{unions_emptyset} +\begin{proposition}\label{unions_emptyset} $\unions{\emptyset} = \emptyset$. \end{proposition} diff --git a/library/topology/topological-space.tex b/library/topology/topological-space.tex index e467d48..2bbdf09 100644 --- a/library/topology/topological-space.tex +++ b/library/topology/topological-space.tex @@ -11,7 +11,6 @@ such that \begin{enumerate} \item\label{opens_type} $\opens[X]$ is a family of subsets of $\carrier[X]$. - \item\label{emptyset_open} $\emptyset\in\opens[X]$. \item\label{carrier_open} $\carrier[X]\in\opens[X]$. \item\label{opens_inter} For all $A, B\in \opens[X]$ we have $A\inter B\in\opens[X]$. \item\label{opens_unions} For all $F\subseteq \opens[X]$ we have $\unions{F}\in\opens[X]$. @@ -26,6 +25,15 @@ $U$ is open in $X$ iff $U\in\opens[X]$. \end{abbreviation} +\begin{proposition}\label{emptyset_open} + Let $X$ be a topological space. + Then $\emptyset$ is open in $X$. +\end{proposition} +\begin{proof} + We have $\unions{\emptyset} = \emptyset\subseteq\opens[X]$ by \cref{unions_emptyset,emptyset_subseteq}. + Follows by \cref{opens_unions}. +\end{proof} + \begin{proposition}\label{union_open} Let $X$ be a topological space. Suppose $A$, $B$ are open. -- cgit v1.2.3 From 719bb860942fc1134ad4a4ae55db2713cd100f1a Mon Sep 17 00:00:00 2001 From: adelon <22380201+adelon@users.noreply.github.com> Date: Tue, 28 May 2024 17:09:06 +0200 Subject: Pow closed under binary intersection --- library/set.tex | 13 +++++-------- library/set/powerset.tex | 11 +++++++++++ 2 files changed, 16 insertions(+), 8 deletions(-) (limited to 'library/set.tex') diff --git a/library/set.tex b/library/set.tex index fcd2642..2fd18ea 100644 --- a/library/set.tex +++ b/library/set.tex @@ -551,14 +551,6 @@ The $\operatorname{\textsf{cons}}$ operation is determined by the following axio Follows by set extensionality. \end{proof} -\begin{proposition}\label{inter_subseteq_left} - $A\inter B\subseteq A$. -\end{proposition} - -\begin{proposition}\label{inter_subseteq_right} - $A\inter B\subseteq B$. -\end{proposition} - \begin{proposition}\label{inter_emptyset} $A\inter\emptyset = \emptyset$. \end{proposition} @@ -620,6 +612,11 @@ The $\operatorname{\textsf{cons}}$ operation is determined by the following axio Follows by set extensionality. \end{proof} +\begin{proposition}\label{inter_subseteq} + Suppose $A,B\subseteq C$. + Then $A\inter B\subseteq C$. +\end{proposition} + \begin{abbreviation}\label{closedunderinter} $T$ is closed under binary intersections iff for every $U,V\in T$ we have $U\inter V\in T$. diff --git a/library/set/powerset.tex b/library/set/powerset.tex index 7f30f68..ec5866f 100644 --- a/library/set/powerset.tex +++ b/library/set/powerset.tex @@ -46,6 +46,17 @@ Follows by \cref{pow_iff,unions_subseteq_of_powerset_is_subseteq}. \end{proof} + +\begin{proposition}\label{inter_powerset} + Let $A,B\in\pow{C}$. + Then $A\inter B\in\pow{C}$. +\end{proposition} +\begin{proof} + We have $A,B\subseteq C$ by \cref{pow_iff}. + $A\inter B\subseteq C$ by \cref{inter_subseteq}. + Follows by \cref{pow_iff}. +\end{proof} + \begin{proposition}\label{unions_powerset} $\unions{\pow{A}} = A$. \end{proposition} -- cgit v1.2.3