From 442d732696ad431b84f6e5c72b6ee785be4fd968 Mon Sep 17 00:00:00 2001 From: adelon <22380201+adelon@users.noreply.github.com> Date: Sat, 10 Feb 2024 02:22:14 +0100 Subject: Initial commit --- library/set/bipartition.tex | 72 +++++++++++++++++++++++++++++++++++++++++++++ 1 file changed, 72 insertions(+) create mode 100644 library/set/bipartition.tex (limited to 'library/set/bipartition.tex') diff --git a/library/set/bipartition.tex b/library/set/bipartition.tex new file mode 100644 index 0000000..e6a76dc --- /dev/null +++ b/library/set/bipartition.tex @@ -0,0 +1,72 @@ +% The theory of splitting sets into two (inhabited, disjoint) partitions. + +% See also "bisections" here: https://isarmathlib.org/Partitions_ZF.html + +\import{set.tex} +\import{set/cons.tex} +\import{set/powerset.tex} + +\subsection{Bipartitions} + +\begin{abbreviation}\label{bipartitions} + $C$ is partitioned by $A$ and $B$ iff $A,B\neq\emptyset$ and $A$ is disjoint from $B$ and $A\union B = C$. +\end{abbreviation} + +\begin{definition}\label{bipartitions_of_a_set} + $\bipartitions{X} = \{ p\in\pow{X}\times\pow{X}\mid \text{$X$ is partitioned by $\fst{p}$ and $\snd{p}$}\}$. +\end{definition} + +\begin{abbreviation}\label{is_a_bipartition_of} + $P$ is a bipartition of $X$ iff $P\in\bipartitions{X}$. +\end{abbreviation} + +\begin{proposition}\label{bipartition_intro} + Suppose $C$ is partitioned by $A$ and $B$. + Then $(A, B)$ is a bipartition of $C$. +\end{proposition} +\begin{proof} + $(A,B)\in\pow{C}\times\pow{C}$. + $C$ is partitioned by $\fst{(A,B)}$ and $\snd{(A,B)}$. + Thus $(A, B)$ is a bipartition of $C$ by \cref{bipartitions_of_a_set}. +\end{proof} + +\begin{proposition}\label{bipartition_elim} + Suppose $(A, B)$ is a bipartition of $C$. + Then $C$ is partitioned by $A$ and $B$. +\end{proposition} +\begin{proof} + $\fst{(A, B)} = A$. + $\snd{(A, B)} = B$. +\end{proof} + +\begin{proposition}\label{bipartitions_emptyset} + $\bipartitions{\emptyset}$ is empty. +\end{proposition} + +\begin{proposition}\label{union_eq_cons_implies_union_remove_eq} + Suppose $d\notin C$. + Suppose $A\union B = \cons{d}{C}$. + Suppose $A, B\neq \{d\}$. + Then $\remove{d}{A}\union \remove{d}{B} = C$. +\end{proposition} +\begin{proof} + Follows by set extensionality. +\end{proof} + +\begin{proposition}\label{bipartitions_cons} + Suppose $d\notin C$. + Suppose $\cons{d}{C}$ is partitioned by $A$ and $B$. + Suppose $A, B\neq \{d\}$. + Then $C$ is partitioned by $\remove{d}{A}$ and $\remove{d}{B}$. +\end{proposition} +\begin{proof} + $\remove{d}{A},\remove{d}{B}\neq\emptyset$. + $\remove{d}{A}\union \remove{d}{B} = C$ by \cref{union_eq_cons_implies_union_remove_eq}. +\end{proof} + +% TODO +%\begin{proposition}\label{singleton_bipartition} +% Suppose $b\notin A$. +% Suppose $A$ and $\{b\}$ bipartition $\cons{b}{C}$. +% Then $A = C$. +%\end{proposition} -- cgit v1.2.3