From 442d732696ad431b84f6e5c72b6ee785be4fd968 Mon Sep 17 00:00:00 2001 From: adelon <22380201+adelon@users.noreply.github.com> Date: Sat, 10 Feb 2024 02:22:14 +0100 Subject: Initial commit --- library/set/equinumerosity.tex | 68 ++++++++++++++++++++++++++++++++++++++++++ 1 file changed, 68 insertions(+) create mode 100644 library/set/equinumerosity.tex (limited to 'library/set/equinumerosity.tex') diff --git a/library/set/equinumerosity.tex b/library/set/equinumerosity.tex new file mode 100644 index 0000000..a846b78 --- /dev/null +++ b/library/set/equinumerosity.tex @@ -0,0 +1,68 @@ +\import{set/powerset.tex} +\import{set/fixpoint.tex} +\import{function.tex} + + +\begin{definition}\label{equinum} + $A$ is equinumerous with $B$ iff there exists a bijection from $A$ to $B$. +\end{definition} + +\begin{abbreviation}\label{approx} + $A\approx B$ iff $A$ is equinumerous with $B$. +\end{abbreviation} + +\begin{proposition}\label{equinum_refl} + $A\approx A$. +\end{proposition} +\begin{proof} + $\identity{A}$ is a bijection from $A$ to $A$ by \cref{id_is_bijection}. + Follows by \cref{equinum}. +\end{proof} + +\begin{proposition}\label{equinum_sym} + Suppose $A\approx B$. Then $B\approx A$. +\end{proposition} +\begin{proof} + Take a bijection $f$ from $A$ to $B$ by \cref{equinum}. + Then $\converse{f}$ is a bijection from $B$ to $A$ by \cref{bijection_converse_is_bijection}. + Follows by \cref{equinum}. +\end{proof} + +\begin{proposition}\label{equinum_tran} + Suppose $A\approx B\approx C$. Then $A\approx C$. +\end{proposition} +\begin{proof} + Take a bijection $f$ from $A$ to $B$ by \cref{equinum}. + Take a bijection $g$ from $B$ to $C$ by \cref{equinum}. + Then $g\circ f$ is a bijection from $A$ to $C$ by \cref{bijection_circ}. + Follows by \cref{equinum}. +\end{proof} + + + +\begin{theorem}[Cantor--Schröder--Bernstein]\label{cantorschroederbernstein} + Let $f$ be an injective function from $A$ to $B$. + Let $g$ be an injective function from $B$ to $A$. + Then $A\approx B$. +\end{theorem} +\begin{proof} + Let $h(X) = A\setminus \img{g}{B\setminus\img{f}{X}}$ for $X\in\pow{A}$. + %By construction: $h$ is a relation. + %By construction: $h$ is right-unique. + %By construction: $\dom{h} = \pow{A}$. + For all $X\in\pow{A}$ we have $h(X)\in\pow{A}$ by \cref{setminus_subseteq,pow_iff}. + Thus $h$ is a function from $\pow{A}$ to $\pow{A}$. + + $h$ is \subseteq-preserving by \cref{subseteqpreserving,img_subseteq,subseteq_implies_setminus_supseteq}. % apply each each lemma twice (alternating). + + Take a fixpoint $X$ of $h$ by \cref{knastertarski}. + Now $X = A\setminus \img{g}{B\setminus\img{f}{X}}$ by \cref{fixpoint}. + + $\img{g}{B\setminus\img{f}{X}}\subseteq A$. + + Thus $\img{g}{B\setminus\img{f}{X}} = A\setminus X$ by \cref{double_relative_complement}. + + Let $h' = \restrl{h}{X}$. + + Omitted. % TODO +\end{proof} -- cgit v1.2.3