From 091da55df4de2d27697203fdddcdacd3c713b38c Mon Sep 17 00:00:00 2001 From: adelon <22380201+adelon@users.noreply.github.com> Date: Thu, 23 May 2024 13:11:39 +0200 Subject: Update formatting --- library/set/powerset.tex | 5 ++--- 1 file changed, 2 insertions(+), 3 deletions(-) (limited to 'library/set/powerset.tex') diff --git a/library/set/powerset.tex b/library/set/powerset.tex index 80da4cb..7f30f68 100644 --- a/library/set/powerset.tex +++ b/library/set/powerset.tex @@ -6,8 +6,7 @@ The powerset of $X$ denotes $\pow{X}$. \end{abbreviation} -\begin{axiom}% -\label{pow_iff} +\begin{axiom}\label{pow_iff} $B\in\pow{A}$ iff $B\subseteq A$. \end{axiom} @@ -76,7 +75,7 @@ % LATER %\begin{proposition}\label{powerset_cons} -% Then $\pow{\cons{b}{A}} = \pow{A}\union \{\cons{b}{B}\mid B\in\pow{A}\}$. +% $\pow{\cons{b}{A}} = \pow{A}\union \{\cons{b}{B}\mid B\in\pow{A}\}$. %\end{proposition} \begin{proposition}\label{powerset_union_subseteq} -- cgit v1.2.3 From 719bb860942fc1134ad4a4ae55db2713cd100f1a Mon Sep 17 00:00:00 2001 From: adelon <22380201+adelon@users.noreply.github.com> Date: Tue, 28 May 2024 17:09:06 +0200 Subject: Pow closed under binary intersection --- library/set.tex | 13 +++++-------- library/set/powerset.tex | 11 +++++++++++ 2 files changed, 16 insertions(+), 8 deletions(-) (limited to 'library/set/powerset.tex') diff --git a/library/set.tex b/library/set.tex index fcd2642..2fd18ea 100644 --- a/library/set.tex +++ b/library/set.tex @@ -551,14 +551,6 @@ The $\operatorname{\textsf{cons}}$ operation is determined by the following axio Follows by set extensionality. \end{proof} -\begin{proposition}\label{inter_subseteq_left} - $A\inter B\subseteq A$. -\end{proposition} - -\begin{proposition}\label{inter_subseteq_right} - $A\inter B\subseteq B$. -\end{proposition} - \begin{proposition}\label{inter_emptyset} $A\inter\emptyset = \emptyset$. \end{proposition} @@ -620,6 +612,11 @@ The $\operatorname{\textsf{cons}}$ operation is determined by the following axio Follows by set extensionality. \end{proof} +\begin{proposition}\label{inter_subseteq} + Suppose $A,B\subseteq C$. + Then $A\inter B\subseteq C$. +\end{proposition} + \begin{abbreviation}\label{closedunderinter} $T$ is closed under binary intersections iff for every $U,V\in T$ we have $U\inter V\in T$. diff --git a/library/set/powerset.tex b/library/set/powerset.tex index 7f30f68..ec5866f 100644 --- a/library/set/powerset.tex +++ b/library/set/powerset.tex @@ -46,6 +46,17 @@ Follows by \cref{pow_iff,unions_subseteq_of_powerset_is_subseteq}. \end{proof} + +\begin{proposition}\label{inter_powerset} + Let $A,B\in\pow{C}$. + Then $A\inter B\in\pow{C}$. +\end{proposition} +\begin{proof} + We have $A,B\subseteq C$ by \cref{pow_iff}. + $A\inter B\subseteq C$ by \cref{inter_subseteq}. + Follows by \cref{pow_iff}. +\end{proof} + \begin{proposition}\label{unions_powerset} $\unions{\pow{A}} = A$. \end{proposition} -- cgit v1.2.3