From 442d732696ad431b84f6e5c72b6ee785be4fd968 Mon Sep 17 00:00:00 2001 From: adelon <22380201+adelon@users.noreply.github.com> Date: Sat, 10 Feb 2024 02:22:14 +0100 Subject: Initial commit --- library/set/product.tex | 118 ++++++++++++++++++++++++++++++++++++++++++++++++ 1 file changed, 118 insertions(+) create mode 100644 library/set/product.tex (limited to 'library/set/product.tex') diff --git a/library/set/product.tex b/library/set/product.tex new file mode 100644 index 0000000..bc7d314 --- /dev/null +++ b/library/set/product.tex @@ -0,0 +1,118 @@ +\import{set.tex} + +\begin{proposition}\label{times_subseteq_left} + Suppose $A\subseteq C$. Then $A\times B\subseteq C\times B$. +\end{proposition} +\begin{proof} + It suffices to show that for all $w\in A\times B$ we have $w\in C\times B$. +\end{proof} + +\begin{proposition}\label{times_subseteq_right} + Suppose $B\subseteq D$. Then $A\times B\subseteq A\times D$. +\end{proposition} +\begin{proof} + It suffices to show that for all $w\in A\times B$ we have $w\in A\times D$. +\end{proof} + +\begin{proposition}\label{inter_times_intro} + Suppose $w\in(A\inter B)\times (C\inter D)$. + Then $w\in(A\times C)\inter (B\times D)$. +\end{proposition} +\begin{proof} + Take $a,c$ such that $w = (a, c)$ + by \cref{times_elem_is_tuple}. + Then $a\in A, B$ and $c\in C,D$ + by \cref{times_tuple_elim,inter}. + Thus $w\in (A\times C), (B\times D)$. +\end{proof} + +\begin{proposition}\label{inter_times_elim} + Suppose $w\in(A\times C)\inter (B\times D)$. + Then $w\in(A\inter B)\times (C\inter D)$. +\end{proposition} +\begin{proof} + $w\in A\times C$. + Take $a, c$ such that $w = (a, c)$. + $a\in A, B$ by \cref{inter,times_tuple_elim}. + $c\in C, D$ by \cref{inter,times_tuple_elim}. + Thus $(a,c) \in (A\inter B)\times (C\inter D)$ by \cref{times,inter_intro}. +\end{proof} + +\begin{proposition}\label{inter_times} + $(A\inter B)\times (C\inter D) = (A\times C)\inter (B\times D)$. +\end{proposition} +\begin{proof} + Follows by set extensionality. +\end{proof} + +\begin{proposition}\label{inter_times_right} + $(X\inter Y)\times Z = (X\times Z)\inter (Y\times Z)$. +\end{proposition} +\begin{proof} + Follows by set extensionality. +\end{proof} + +\begin{proposition}\label{inter_times_left} + $X\times (Y\inter Z) = (X\times Y)\inter (X\times Z)$. +\end{proposition} +\begin{proof} + Follows by set extensionality. +\end{proof} + +\begin{proposition}\label{union_times_intro} + Suppose $w\in(A\union B)\times (C\union D)$. + Then $w\in(A\times C)\union (B\times D)\union (A\times D)\union (B\times C)$. +\end{proposition} +\begin{proof} + Take $a,c$ such that $w = (a, c)$. + $a\in A$ or $a\in B$ by \cref{union_iff,times_tuple_elim}. + $c\in C$ or $c\in D$ by \cref{union_iff,times_tuple_elim}. + Thus $(a, c)\in (A\times C)$ or $(a, c)\in (B\times D)$ or $(a, c)\in (A\times D)$ or $(a, c)\in (B\times C)$. + Thus $(a, c)\in (A\times C)\union (B\times D)\union (A\times D)\union (B\times C)$. +\end{proof} + +\begin{proposition}\label{union_times_elim} + Suppose $w\in(A\times C)\union (B\times D)\union (A\times D)\union (B\times C)$. + Then $w\in(A\union B)\times (C\union D)$. +\end{proposition} +\begin{proof} + \begin{byCase} + \caseOf{$w\in(A\times C)$.} + Take $a, c$ such that $w = (a, c) \land a\in A\land c\in C$ by \cref{times}. + Then $a\in A\union B$ and $c\in C\union D$. + Follows by \cref{times_tuple_intro}. + \caseOf{$w\in(B\times D)$.} + Take $b, d$ such that $w = (b, d) \land b\in B\land d\in D$ by \cref{times}. + Then $b\in A\union B$ and $d\in C\union D$. + Follows by \cref{times_tuple_intro}. + \caseOf{$w\in(A\times D)$.} + Take $a, d$ such that $w = (a, d) \land a\in A\land d\in D$ by \cref{times}. + Then $a\in A\union B$ and $d\in C\union D$. + Follows by \cref{times_tuple_intro}. + \caseOf{$w\in(B\times C)$.} + Take $b, c$ such that $w = (b, c) \land b\in B\land c\in C$ by \cref{times}. + Then $b\in A\union B$ and $c\in C\union D$. + Follows by \cref{times_tuple_intro}. + \end{byCase} +\end{proof} + +\begin{proposition}\label{union_times} + $(A\union B)\times (C\union D) = (A\times C)\union (B\times D)\union (A\times D)\union (B\times C)$. +\end{proposition} +\begin{proof} + Follows by set extensionality. +\end{proof} + +\begin{proposition}\label{union_times_left} + $(X\union Y)\times Z = (X\times Z)\union (Y\times Z)$. +\end{proposition} +\begin{proof} + Follows by set extensionality. +\end{proof} + +\begin{proposition}\label{union_times_right} + $X\times (Y\union Z) = (X\times Y)\union (X\times Z)$. +\end{proposition} +\begin{proof} + Follows by set extensionality. +\end{proof} -- cgit v1.2.3