From 442d732696ad431b84f6e5c72b6ee785be4fd968 Mon Sep 17 00:00:00 2001 From: adelon <22380201+adelon@users.noreply.github.com> Date: Sat, 10 Feb 2024 02:22:14 +0100 Subject: Initial commit --- library/set/symdiff.tex | 45 +++++++++++++++++++++++++++++++++++++++++++++ 1 file changed, 45 insertions(+) create mode 100644 library/set/symdiff.tex (limited to 'library/set/symdiff.tex') diff --git a/library/set/symdiff.tex b/library/set/symdiff.tex new file mode 100644 index 0000000..61f7448 --- /dev/null +++ b/library/set/symdiff.tex @@ -0,0 +1,45 @@ +\subsection{Symmetric difference} + +\import{set.tex} + +\begin{definition}\label{symdiff} + $x\symdiff y = (x\setminus y)\union (y\setminus x)$. +\end{definition} + +\begin{proposition}% +\label{symdiff_as_setdiff} + $x\symdiff y = (x\union y)\setminus (y\inter x)$. +\end{proposition} +\begin{proof} + Follows by set extensionality. +\end{proof} + +\begin{proposition}% +\label{symdiff_implies_xor_in} + If $z\in x\symdiff y$, then either $z\in x$ or $z\in y$. +\end{proposition} + +\begin{proposition}% +\label{xor_in_implies_symdiff} + If either $z\in x$ or $z\in y$, then $z\in x\symdiff y$. +\end{proposition} +\begin{proof} + If $z\in x$ and $z\not\in y$, then $z\in x\setminus y$. + If $z\not\in x$ and $z\in y$, then $z\in y\setminus x$. +\end{proof} + +\begin{proposition}% +\label{symdiff_assoc} + $x\symdiff (y\symdiff z) = (x\symdiff y)\symdiff z$. +\end{proposition} +\begin{proof} + Follows by set extensionality. +\end{proof} + +\begin{proposition}% +\label{symdiff_comm} + $x\symdiff y = y\symdiff x$. +\end{proposition} +\begin{proof} + Follows by set extensionality. +\end{proof} -- cgit v1.2.3