From ecfb1a66f2159e078199e54edf8a80004c28195a Mon Sep 17 00:00:00 2001 From: Simon-Kor <52245124+Simon-Kor@users.noreply.github.com> Date: Tue, 28 May 2024 15:33:45 +0200 Subject: proofing some lammes about topological basis --- library/topology/metric-space.tex | 60 +++++++++++++++++++++++++-------------- 1 file changed, 39 insertions(+), 21 deletions(-) (limited to 'library/topology/metric-space.tex') diff --git a/library/topology/metric-space.tex b/library/topology/metric-space.tex index 8ec83f7..1c6a0ca 100644 --- a/library/topology/metric-space.tex +++ b/library/topology/metric-space.tex @@ -2,6 +2,7 @@ \import{numbers.tex} \import{function.tex} \import{set/powerset.tex} +\import{topology/basis.tex} \section{Metric Spaces} @@ -20,38 +21,42 @@ -\begin{definition}\label{induced_topology} - $O$ is the induced topology of $d$ in $M$ iff - $O \subseteq \pow{M}$ and - $d$ is a metric on $M$ and - for all $x,r,A,B,C$ - such that $x \in M$ and $r \in \reals$ and $A,B \in O$ and $C$ is a family of subsets of $O$ - we have $\openball{r}{x}{d} \in O$ and $\unions{C} \in O$ and $A \inter B \in O$. -\end{definition} +%\begin{definition}\label{induced_topology} +% $O$ is the induced topology of $d$ in $M$ iff +% $O \subseteq \pow{M}$ and +% $d$ is a metric on $M$ and +% for all $x,r,A,B,C$ +% such that $x \in M$ and $r \in \reals$ and $A,B \in O$ and $C$ is a family of subsets of $O$ +% we have $\openball{r}{x}{d} \in O$ and $\unions{C} \in O$ and $A \inter B \in O$. +%\end{definition} %\begin{definition} % $\projcetfirst{A} = \{a \mid \exists x \in X \text{there exist $x \i } \}$ %\end{definition} \begin{definition}\label{set_of_balls} - $\balls{d}{M} = \{ O \in \pow{M} \mid \text{there exists $x,r$ such that $r \in \reals$ and $x \in M$ we have $O = \openball{r}{x}{d}$ } \}$. + $\balls{d}{M} = \{ O \in \pow{M} \mid \text{there exists $x,r$ such that $r \in \reals$ and $x \in M$ and $O = \openball{r}{x}{d}$ } \}$. \end{definition} -\begin{definition}\label{toindsas} - $\metricopens{d}{M} = \{O \in \pow{M} \mid \text{ - $d$ is a metric on $M$ and - for all $x,r,A,B,C$ - such that $x \in M$ and $r \in \reals$ and $A,B \in O$ and $C$ is a family of subsets of $O$ - we have $\openball{r}{x}{d} \in O$ and $\unions{C} \in O$ and $A \inter B \in O$. - } \}$. - -\end{definition} +%\begin{definition}\label{toindsas} +% $\metricopens{d}{M} = \{O \in \pow{M} \mid \text{ +% $d$ is a metric on $M$ and +% for all $x,r,A,B,C$ +% such that $x \in M$ and $r \in \reals$ and $A,B \in O$ and $C$ is a family of subsets of $O$ +% we have $\openball{r}{x}{d} \in O$ and $\unions{C} \in O$ and $A \inter B \in O$. +% } \}$. +% +%\end{definition} -\begin{theorem}\label{metric_induce_a_topology} - +\begin{definition}\label{metricopens} + $\metricopens{d}{M} = \genOpens{\balls{d}{M}}{M}$. +\end{definition} +\begin{theorem} + Let $d$ be a metric on $M$. + $M$ is a topological space. \end{theorem} @@ -70,7 +75,7 @@ \begin{enumerate} \item \label{metric_space_metric} $\metric[M]$ is a metric on $M$. \item \label{metric_space_topology} $M$ is a topological space. - \item \label{metric_space_opens} for all $x \in M$ for all $r \in \reals$ $\openball{r}{x}{\metric[M]} \in \opens[M]$. + \item \label{metric_space_opens} $\metricopens{ \metric[M] }{M} = \opens[M]$. \end{enumerate} \end{struct} @@ -132,3 +137,16 @@ % Then $\openball{r}{x}{M} \in \opens[M]$. %\end{proposition} + + + + + +%TODO: - Basis indudiert topology lemma +% - Offe Bälle sind basis + +% Was danach kommen soll bleibt offen, vll buch oder in proof wiki +% Trennungsaxiom, + +% Notaionen aufräumen damit das gut gemercht werden kann. + -- cgit v1.2.3