From 3795588d157864a411baf2fc3afb31f9f5184d93 Mon Sep 17 00:00:00 2001 From: Simon-Kor <52245124+Simon-Kor@users.noreply.github.com> Date: Tue, 7 May 2024 14:41:15 +0200 Subject: Formalization of metric spaces and some cleaning of numbers.tex Formalization of metric spaces: Therefore we introduced the predicate metric and its axiomatization. Then we introduced the term metric space in dependence of a metric function. This metric space is automatically a a topological space. --- library/topology/order-topology.tex | 32 +++++++++++++++++++++++++++++--- 1 file changed, 29 insertions(+), 3 deletions(-) (limited to 'library/topology/order-topology.tex') diff --git a/library/topology/order-topology.tex b/library/topology/order-topology.tex index afa8755..2dd026d 100644 --- a/library/topology/order-topology.tex +++ b/library/topology/order-topology.tex @@ -1,7 +1,33 @@ \import{topology/topological-space.tex} +\import{order/order.tex} \section{Order Topology} -\begin{definition} - A -\end{definition} +\begin{abbreviation}\label{open_interval} + $z \in \oointervalof{x}{y}$ iff $x \mathrel{R} y$ and $x \mathrel{R} z$ and $z \mathrel{R} y$. + %$\oointervalof{x}{y}{X} = \{ z \mid x \in X, y \in X, z \in X x \mathrel{R} y \wedge x \mathrel{R} z \wedge z \mathrel{R} y\}$. +\end{abbreviation} + +\begin{struct}\label{order_topology} + A ordertopology space $X$ is a onesorted structure equipped with + \begin{enumerate} + \item $<$ + \end{enumerate} + such that + \begin{enumerate} + \item \label{order_topology_1} $<$ is a strict order on $X$ + \item \label{order_topology_2} + \item \label{order_topology_3} + \item \label{order_topology_4} + \item \label{order_topology} + \item \label{order_topology} + \item \label{order_topology} + \end{enumerate} +\end{struct} + + + +%\begin{definition}\label{order_topology} +% $X$ has the order topology iff for all $x,y \in X$ $X$ has a strict order $R$ and $\oointervalof{x}{y}{X} \in \opens[X]$ and $X$ is a topological space. +% %$O$ is the order Topology on $X$ iff for all $x,y \in X$ $X$ has a strict order $R$ and $(x,y) \in O$ and $O$ is . +%\end{definition} -- cgit v1.2.3