From 442d732696ad431b84f6e5c72b6ee785be4fd968 Mon Sep 17 00:00:00 2001 From: adelon <22380201+adelon@users.noreply.github.com> Date: Sat, 10 Feb 2024 02:22:14 +0100 Subject: Initial commit --- library/topology/separation.tex | 124 ++++++++++++++++++++++++++++++++++++++++ 1 file changed, 124 insertions(+) create mode 100644 library/topology/separation.tex (limited to 'library/topology/separation.tex') diff --git a/library/topology/separation.tex b/library/topology/separation.tex new file mode 100644 index 0000000..f70cb50 --- /dev/null +++ b/library/topology/separation.tex @@ -0,0 +1,124 @@ +\import{topology/topological-space.tex} + + +% T0 separation +\begin{definition}\label{is_kolmogorov} + $X$ is Kolmogorov iff + for all $x,y\in\carrier[X]$ such that $x\neq y$ + there exist $U\in\opens[X]$ such that + $x\in U\not\ni y$ or $x\notin U\ni y$. +\end{definition} + +\begin{abbreviation}\label{kolmogorov_space} + $X$ is a Kolmogorov space iff $X$ is a topological space and + $X$ is Kolmogorov. +\end{abbreviation} + +\begin{abbreviation}\label{teezero} + $X$ is \teezero\ iff $X$ is Kolmogorov. +\end{abbreviation} + +\begin{abbreviation}\label{teezero_space} + $X$ is a \teezero-space iff $X$ is a Kolmogorov space. +\end{abbreviation} + +\begin{proposition}\label{kolmogorov_implies_kolmogorov_for_closeds} + Suppose $X$ is a Kolmogorov space. + Let $x,y\in\carrier[X]$. + Suppose $x\neq y$. + Then there exist $A\in\closeds{X}$ such that + $x\in A\not\ni y$ or $x\notin A\ni y$. +\end{proposition} +\begin{proof} + Take $U\in\opens[X]$ such that $x\in U\not\ni y$ or $x\notin U\ni y$ + by \cref{is_kolmogorov}. + Then $\carrier[X]\setminus U\in\closeds{X}$ by \cref{complement_of_open_elem_closeds}. + Now $x\in (\carrier[X]\setminus U)\not\ni y$ or $x\notin (\carrier[X]\setminus U)\ni y$ + by \cref{setminus}. +\end{proof} + +\begin{proposition}\label{kolmogorov_for_closeds_implies_kolmogorov} + Suppose for all $x,y\in\carrier[X]$ such that $x\neq y$ + there exist $U\in\closeds{X}$ such that + $x\in U\not\ni y$ or $x\notin U\ni y$. + Then $X$ is Kolmogorov. +\end{proposition} +\begin{proof} + Follows by \cref{closeds,is_closed_in,is_kolmogorov,setminus}. +\end{proof} + +\begin{proposition}\label{kolmogorov_iff_kolmogorov_for_closeds} + Let $X$ be a topological space. + $X$ is Kolmogorov iff + for all $x,y\in\carrier[X]$ such that $x\neq y$ + there exist $U\in\closeds{X}$ such that + $x\in U\not\ni y$ or $x\notin U\ni y$. +\end{proposition} +\begin{proof} + Follows by \cref{kolmogorov_implies_kolmogorov_for_closeds,kolmogorov_for_closeds_implies_kolmogorov}. +\end{proof} + +% T1 separation (Fréchet topology) +\begin{definition}\label{teeone} + $X$ is \teeone\ iff + for all $x,y\in\carrier[X]$ such that $x\neq y$ + there exist $U, V\in\opens[X]$ such that + $U\ni x\notin V$ and $V\ni y\notin U$. +\end{definition} + +\begin{abbreviation}\label{teeone_space} + $X$ is a \teeone-space iff $X$ is a topological space and + $X$ is \teeone. +\end{abbreviation} + +\begin{proposition}\label{teeone_implies_singletons_closed} + Let $X$ be a \teeone-space. + Then for all $x\in\carrier[X]$ we have $\{x\}$ is closed in $X$. +\end{proposition} +\begin{proof} + Omitted. + % TODO + % Choose for every y distinct from x and open subset U_y containing y but not x. + % The union U of all the U_y is open. + % {x} is the complement of U in \carrier[X]. +\end{proof} +% +% Conversely, if \{x\} is open, then for any y distinct from x we can use +% X\setminus\{x\} as the open neighbourhood of y. + +% T2 separation +\begin{definition}\label{is_hausdorff} + $X$ is Hausdorff iff + for all $x,y\in\carrier[X]$ such that $x\neq y$ + there exist $U, V\in\opens[X]$ such that + $x\in U$ and $y\in V$ and $U$ is disjoint from $V$. +\end{definition} + +\begin{abbreviation}\label{hausdorff_space} + $X$ is a Hausdorff space iff $X$ is a topological space and + $X$ is Hausdorff. +\end{abbreviation} + +\begin{abbreviation}\label{teetwo} + $X$ is \teetwo\ iff $X$ is Hausdorff. +\end{abbreviation} + +\begin{abbreviation}\label{teetwo_space} + $X$ is a \teetwo-space iff $X$ is a Hausdorff space. +\end{abbreviation} + +\begin{proposition}\label{teeone_space_is_teezero_space} + Let $X$ be a \teeone-space. + Then $X$ is a \teezero-space. +\end{proposition} +\begin{proof} + Follows by \cref{is_kolmogorov,teeone}. +\end{proof} + +\begin{proposition}\label{teetwo_space_is_teeone_space} + Let $X$ be a \teetwo-space. + Then $X$ is a \teeone-space. +\end{proposition} +\begin{proof} + Omitted. % TODO +\end{proof} -- cgit v1.2.3