From 9563a18e455469bc64a9a8f61a95fb33f506bed0 Mon Sep 17 00:00:00 2001 From: Simon-Kor <52245124+Simon-Kor@users.noreply.github.com> Date: Tue, 18 Jun 2024 17:07:15 +0200 Subject: Definition of T3 and regular spaces. --- library/topology/topological-space.tex | 26 +++++++------------------- 1 file changed, 7 insertions(+), 19 deletions(-) (limited to 'library/topology/topological-space.tex') diff --git a/library/topology/topological-space.tex b/library/topology/topological-space.tex index 7ff588d..c40aba4 100644 --- a/library/topology/topological-space.tex +++ b/library/topology/topological-space.tex @@ -239,18 +239,12 @@ Then $A \subseteq \unions{F}$. \end{proposition} \begin{proof} - \begin{byCase} - %\caseOf{$F$ is empty.} - %For all $X$ we have $X \notin F$. - %If $X \in F$ and $A \in X$ then $A \in F$. - %Contradiction by assumption. - %Omitted. - \caseOf{$F$ is inhabited.} - There exist $X \in F$ such that $X \subseteq \unions{F}$. - $A \subseteq X \subseteq \unions{F}$. - \end{byCase} + There exist $X \in F$ such that $X \subseteq \unions{F}$. + $A \subseteq X \subseteq \unions{F}$. \end{proof} + + \begin{proposition}\label{subseteq_inters_iff_to_left} Let $A,F$ be sets. Suppose $F$ is inhabited. % TODO:Remove!! @@ -379,10 +373,6 @@ Then $a \notin \unions{F'}$. Therefore $a \in \carrier[X] \setminus (\unions{F'})$. \end{subproof} - - - - We show that for all $a \in \carrier[X] \setminus (\unions{F'})$ we have $a \in \inters{F}$. \begin{subproof} \begin{byCase} @@ -426,17 +416,15 @@ \end{byCase} \end{proof} -\begin{definition}\label{set_of_closeds} - $\closeds[X] = \{ Y \in \pow{\carrier[X]} \mid \text{$Y$ is closed in $X$}\}$. -\end{definition} + \begin{proposition}\label{closure_is_minimal_closed_set} Let $X$ be a topological space. Suppose $A \subseteq \carrier[X]$. - For all $Y \in \closeds[X]$ such that $A \subseteq Y$ we have $\closure{A}{X} \subseteq Y$. + For all $Y \in \closeds{X}$ such that $A \subseteq Y$ we have $\closure{A}{X} \subseteq Y$. \end{proposition} \begin{proof} - Follows by \cref{closure,set_of_closeds,inters_subseteq_elem,closures}. + Follows by \cref{closure,closeds,inters_subseteq_elem,closures}. \end{proof} \begin{proposition}\label{complement_interior_eq_closure_complement} -- cgit v1.2.3