From 29027c9d2cdbdfe59e48b5aa28eb2d32d1a4c1f7 Mon Sep 17 00:00:00 2001 From: Simon-Kor <52245124+Simon-Kor@users.noreply.github.com> Date: Sat, 24 Aug 2024 11:43:29 +0200 Subject: naproch sty extension --- library/topology/urysohn.tex | 33 +++++++++++++++++++-------------- 1 file changed, 19 insertions(+), 14 deletions(-) (limited to 'library/topology/urysohn.tex') diff --git a/library/topology/urysohn.tex b/library/topology/urysohn.tex index c3c72f0..b8a5fa5 100644 --- a/library/topology/urysohn.tex +++ b/library/topology/urysohn.tex @@ -504,26 +504,31 @@ The first tept will be a formalisation of chain constructions. -\begin{definition}\label{sequencetwo} - $Z$ is a sequencetwo iff $Z = (N,f,B)$ and $N \subseteq \naturals$ and $f$ is a bijection from $N$ to $B$. -\end{definition} - -\begin{proposition}\label{sequence_existence} - Suppose $N \subseteq \naturals$. - Suppose $M \subseteq \naturals$. - Suppose $N = M$. - Then there exist $Z,f$ such that $f$ is a bijection from $N$ to $M$ and $Z=(N,f,M)$ and $Z$ is a sequencetwo. -\end{proposition} -\begin{proof} - Let $f(x) = x$ for $x \in N$. - Let $Z=(N,f,M)$. -\end{proof} +%\begin{definition}\label{sequencetwo} +% $Z$ is a sequencetwo iff $Z = (N,f,B)$ and $N \subseteq \naturals$ and $f$ is a bijection from $N$ to $B$. +%\end{definition} +% +%\begin{proposition}\label{sequence_existence} +% Suppose $N \subseteq \naturals$. +% Suppose $M \subseteq \naturals$. +% Suppose $N = M$. +% Then there exist $Z,f$ such that $f$ is a bijection from $N$ to $M$ and $Z=(N,f,M)$ and $Z$ is a sequencetwo. +%\end{proposition} +%\begin{proof} +% Let $f(x) = x$ for $x \in N$. +% Let $Z=(N,f,M)$. +%\end{proof} %The proposition above and the definition prove false together with % ordinal_subseteq_unions, omega_is_an_ordinal, powerset_intro, in_irrefl + + + + + \begin{theorem}\label{urysohn} Let $X$ be a urysohn space. Suppose $A,B \in \closeds{X}$. -- cgit v1.2.3