From 65e5a741655d8339ad5763e365ea2addd2e96e51 Mon Sep 17 00:00:00 2001 From: Simon-Kor <52245124+Simon-Kor@users.noreply.github.com> Date: Fri, 9 Aug 2024 15:15:49 +0200 Subject: put cardinalit to the right place --- library/topology/urysohn.tex | 39 ++++++++++++++++++++++++++++++++------- 1 file changed, 32 insertions(+), 7 deletions(-) (limited to 'library/topology/urysohn.tex') diff --git a/library/topology/urysohn.tex b/library/topology/urysohn.tex index 65457ea..c795db8 100644 --- a/library/topology/urysohn.tex +++ b/library/topology/urysohn.tex @@ -33,10 +33,6 @@ The first tept will be a formalisation of chain constructions. $\seq{m}{n} = \{x \in \naturals \mid m \leq x \leq n\}$. \end{definition} -\begin{definition}\label{cardinality} - $X$ has cardinality of $n$ iff - $n \in \naturals$ and there exists $b$ such that $b$ is a bijection from $\seq{1}{n}$ to $X$. -\end{definition} @@ -134,6 +130,13 @@ The first tept will be a formalisation of chain constructions. for all $n,m \in \indexset[C]$ such that $n < m$ we have $\closure{\index[C](n)}{X} \subseteq \interior{\index[C](m)}{X}$. \end{definition} +\begin{definition}\label{urysohnchain_without_cardinality} + $C$ is a urysohnchain in $X$ iff + $C$ is a chain of subsets and + for all $A \in C$ we have $A \subseteq X$ and + for all $n,m \in \indexset[C]$ such that $n < m$ we have $\closure{\index[C](n)}{X} \subseteq \interior{\index[C](m)}{X}$. +\end{definition} + \begin{abbreviation}\label{infinte_sequence} $S$ is a infinite sequence iff $S$ is a sequence and $\indexset[S]$ is infinite. \end{abbreviation} @@ -149,6 +152,26 @@ The first tept will be a formalisation of chain constructions. and for all $g \in C$ such that $g \neq c$ we have not $y \subset g \subset x$. \end{definition} +\begin{abbreviation}\label{two} + $\two = \suc{1}$. +\end{abbreviation} + +\begin{lemma}\label{two_in_reals} + $\two \in \reals$. +\end{lemma} + +\begin{lemma}\label{two_in_naturals} + $\two \in \naturals$. +\end{lemma} + +\begin{inductive}\label{power_of_two} + Define $\powerOfTwoSet \subseteq \naturals$. + \begin{enumerate} + \item $\two \in \powerOfTwoSet$. + \item If $n \in \powerOfTwoSet$, then $n \rmul \two \in \powerOfTwoSet$. + \end{enumerate} + +\end{inductive} % The next thing we need to define is the uniform staircase function. % This function has it's domain in $X$ and maps to the closed interval $[0,1]$. @@ -186,6 +209,8 @@ The first tept will be a formalisation of chain constructions. Omitted. \end{subproof} + There exist $\eta$ such that $\eta$ is a urysohnchain in $X$ and $\eta =\{A, (x \setminus B)\}$. + Take $P$ such that $P$ is a infinite sequence and $\indexset[P] = \naturals$ and for all $i \in \indexset[P]$ we have $\index[P](i) = \pow{X}$. @@ -269,6 +294,6 @@ The first tept will be a formalisation of chain constructions. %\end{subproof} \end{proof} -%\begin{theorem}\label{safe} -% Contradiction. -%\end{theorem} +\begin{theorem}\label{safe} + Contradiction. +\end{theorem} -- cgit v1.2.3