From 85920f166c95904550134a1d4e84d5430c05d009 Mon Sep 17 00:00:00 2001 From: Simon-Kor <52245124+Simon-Kor@users.noreply.github.com> Date: Mon, 12 Aug 2024 11:43:26 +0200 Subject: way more urysohn --- library/topology/urysohn.tex | 116 +++++++++++++++++++++++++++++++++++++------ 1 file changed, 102 insertions(+), 14 deletions(-) (limited to 'library/topology/urysohn.tex') diff --git a/library/topology/urysohn.tex b/library/topology/urysohn.tex index 0c4052d..d8b1e14 100644 --- a/library/topology/urysohn.tex +++ b/library/topology/urysohn.tex @@ -402,18 +402,32 @@ The first tept will be a formalisation of chain constructions. Omitted. \end{proof} +\begin{definition}\label{limit_sequence} + $x$ is the limit sequence of $f$ iff + $x$ is a sequence and $\indexset[x] = \dom{f}$ and + for all $n \in \indexset[x]$ we have + $\index[x](n) = f(n)$. +\end{definition} +\begin{definition}\label{realsminus} + $\realsminus = \{r \in \reals \mid r < \zero\}$. +\end{definition} + +\begin{abbreviation}\label{realsplus} + $\realsplus = \reals \setminus \realsminus$. +\end{abbreviation} \begin{theorem}\label{urysohn} Let $X$ be a urysohn space. Suppose $A,B \in \closeds{X}$. Suppose $A \inter B$ is empty. + Suppose $\carrier[X]$ is inhabited. There exist $f$ such that $f \in \funs{\carrier[X]}{\intervalclosed{\zero}{1}}$ - and $f(A) = 0$ and $f(B)= 1$ and $f$ is continuous. + and $f(A) = \zero$ and $f(B)= 1$ and $f$ is continuous. \end{theorem} \begin{proof} - + There exist $\eta$ such that $\carrier[\eta] = \{A, (\carrier[X] \setminus B)\}$ and $\indexset[\eta] = \{\zero, 1\}$ and $\index[\eta](\zero) = A$ @@ -498,29 +512,103 @@ The first tept will be a formalisation of chain constructions. \}$. Let $\gamma(n) = \apply{\gamma}{n}$ for $n \in \naturals$. - + %We show that there exist $\kappa$ such that $\kappa$ is the limit sequence of $\gamma$. + %\begin{subproof} + % Omitted. + %\end{subproof} - We show that there exist $F$ such that - $F \in \funs{\carrier[X]}{\intervalclosed{\zero}{1}}$ and - for all $x \in \carrier[X]$ we have - there exist $k \in \intervalclosed{\zero}{1}$ - such that $F(x) = k$ and - for all $\epsilon \in \reals$ such that $\epsilon > \zero$ - we have there exist $N \in \naturals$ such that - for all $N' \in \naturals$ such that $N' > N$ - we have $\abs{(k - \apply{\gamma(N')}{x})} \leq \epsilon$. + %Let $\gamma(n)(x) = \apply{\gamma(n)}{x}$ for $x\in \carrier[X]$ + + We show that for all $n \in \naturals$ we have $\gamma(n)$ + is a function from $\carrier[X]$ to $\reals$. \begin{subproof} Omitted. \end{subproof} + + + We show that there exist $g$ such that + for all $x \in \carrier[X]$ we have + there exist $k \in \reals$ such that + for all $\epsilon \in \reals$ such that $\epsilon > \zero$ we have + there exist $N \in \naturals$ such that + for all $N' \in \naturals$ such that $N' > N$ we have + $\abs{\apply{\gamma(n)}{x} - k} < \epsilon$ and $g(x)= k$. + \begin{subproof} + + %Let $G(x) = \{k \in \carrier[X] \mid \forall \epsilon \in \realsplus. \exists N \in \naturals. \forall N' \in \naturals. (N' > N) \land (\abs{\apply{\gamma(n)}{x} - k} < \epsilon)\}$ for $x \in \carrier[X]$. +% + %We show that for all $x \in \carrier[X]$ we have $G(x)$ has cardinality $1$. + %\begin{subproof} + % Omitted. + %\end{subproof} +% + %Let $H(x) = \unions{G(x)}$ for $x \in \carrier[X]$. + %For all $x \in \carrier[X]$ we have $\{H(x)\} = G(x)$. + + We show that for all $x \in \carrier[X]$ we have + there exist $k \in \reals$ such that + for all $\epsilon \in \reals$ such that $\epsilon > \zero$ we have + there exist $N \in \naturals$ such that + for all $N' \in \naturals$ such that $N' > N$ we have + $\abs{\apply{\gamma(n)}{x} - k} < \epsilon$. + \begin{subproof} + Omitted. + \end{subproof} + + + \end{subproof} + + + %Let $S(x) = \{(n,x) \mid n \in naturals \mid x = (\gamma(n))(x)\}$. + + %Let $S(x) + + %We show that there exist $F$ such that + %for all $x \in \carrier[X]$ we have $F(x)$ is + + + %We show that there exist $F$ such that + %$F \in \funs{\carrier[X]}{\intervalclosed{\zero}{1}}$ and + %for all $x \in \carrier[X]$ we have + %there exist $k \in \intervalclosed{\zero}{1}$ + %such that $F(x) = k$ and + %for all $\epsilon \in \reals$ such that $\epsilon > \zero$ + %we have there exist $N \in \naturals$ such that + %for all $N' \in \naturals$ such that $N' > N$ + %we have $\abs{(k - \apply{\gamma(N')}{x})} \leq \epsilon$. + %\begin{subproof} + % Omitted. + %\end{subproof} + + We show that $F \in \funs{\carrier[X]}{\intervalclosed{\zero}{1}}$. - \begin{subproof} + \begin{subproof} Omitted. + + %It suffices to show that $\dom{F} = \carrier[X]$ and + %$F \in \rels{\carrier[X]}{\intervalclosed{\zero}{1}}$ and $F$ is right-unique. + % + %We show that $F \in \rels{\carrier[X]}{\intervalclosed{\zero}{1}}$. + %\begin{subproof} + % It suffices to show that $F \in \pow{\carrier[X] \times \intervalclosed{\zero}{1}}$. + % It suffices to show that for all $w \in F$ we have $w \in (\carrier[X] \times \intervalclosed{\zero}{1})$. +% + % Fix $w \in F$. +% + % %Take $x$ such that there exist $k \in \intervalclosed{\zero}{1}$ such that $w = (x,k)$. +% +% + %\end{subproof} + % +% +% + %Trivial. \end{subproof} - We show that $F(A) = 0$. + We show that $F(A) = \zero$. \begin{subproof} Omitted. \end{subproof} -- cgit v1.2.3