From 010b2ce53a4a5e693ced109eda38b167f3e284d7 Mon Sep 17 00:00:00 2001 From: Simon-Kor <52245124+Simon-Kor@users.noreply.github.com> Date: Mon, 2 Sep 2024 17:17:38 +0200 Subject: working commit --- library/topology/urysohn2.tex | 20 ++++++++++++++++++-- 1 file changed, 18 insertions(+), 2 deletions(-) (limited to 'library/topology/urysohn2.tex') diff --git a/library/topology/urysohn2.tex b/library/topology/urysohn2.tex index ad3f1d7..c0b46c4 100644 --- a/library/topology/urysohn2.tex +++ b/library/topology/urysohn2.tex @@ -156,6 +156,7 @@ $\dom{U_0} = N$. $\dom{U_0} \subseteq \naturals$ by \cref{ran_converse}. $U_0$ is a sequence. + We have $1, \zero \in N$. We show that $U_0$ is a chain of subsets in $X$. \begin{subproof} We have $\dom{U_0} \subseteq \naturals$. @@ -163,9 +164,24 @@ We have $\dom{U_0} = \{\zero, 1\}$. It suffices to show that for all $n \in \dom{U_0}$ we have for all $m \in \dom{U_0}$ such that $m > n$ we have $\at{U_0}{n} \subseteq \at{U_0}{m}$. + + Fix $n \in \dom{U_0}$. + Fix $m \in \dom{U_0}$. + + \begin{byCase} + \caseOf{$n \neq \zero$.} + Trivial. + \caseOf{$n = \zero$.} + \begin{byCase} + \caseOf{$m = \zero$.} + Trivial. + \caseOf{$m \neq \zero$.} + We have $A \subseteq A'$. + We have $\at{U_0}{\zero} = A$ by assumption. + We have $\at{U_0}{1}= A'$ by assumption. + \end{byCase} + \end{byCase} - It suffices to show that $\at{U_0}{\zero} \subseteq \at{U_0}{1}$. - Follows by \cref{one_in_reals,order_reals_lemma0,upair_elim,reals_one_bigger_zero,reals_order,reals_axiom_zero_in_reals,subseteq_refl,apply}. \end{subproof} $U_0$ is a urysohnchain of $X$. -- cgit v1.2.3