From 22e9ebe72c349514a1ee0ed37772ca8168eaf658 Mon Sep 17 00:00:00 2001 From: Simon-Kor <52245124+Simon-Kor@users.noreply.github.com> Date: Wed, 4 Sep 2024 17:02:07 +0200 Subject: working commit --- library/topology/urysohn2.tex | 56 +++++++++++++++++++++++++++++++++++++++++-- 1 file changed, 54 insertions(+), 2 deletions(-) (limited to 'library/topology/urysohn2.tex') diff --git a/library/topology/urysohn2.tex b/library/topology/urysohn2.tex index a3f3ea4..d08d507 100644 --- a/library/topology/urysohn2.tex +++ b/library/topology/urysohn2.tex @@ -98,20 +98,68 @@ \begin{proposition}\label{naturals_elem_in_transitive} If $n \in \naturals$ then $n$ is \in-transitive and every element of $n$ is \in-transitive. %If $n$ is a natural number then $n$ is \in-transitive and every element of $n$ is \in-transitive. - \end{proposition} -\begin{proposition}\label{seq_zero_to_n_isomorph_to_n} +\begin{proposition}\label{zero_is_in_minimal} + $\zero$ is an \in-minimal element of $\naturals$. +\end{proposition} + +\begin{proposition}\label{seq_zero_to_n_isomorph_to_suc_n} For all $n \in \naturals$ we have $\seq{\zero}{n}$ has cardinality $\suc{n}$. \end{proposition} \begin{proof} [Proof by \in-induction on $n$] Assume $n \in \naturals$. + For all $m \in n$ we have $m \in \naturals$. + \begin{byCase} + \caseOf{$n = \zero$.} + It suffices to show that $1 = \seq{\zero}{\zero}$. + Follows by set extensionality. + \caseOf{$n \neq \zero$.} + Take $k$ such that $k \in \naturals$ and $\suc{k} = n$. + Then $k \in n$. + Therefore $\seq{\zero}{k}$ has cardinality $\suc{k}$. + Now $\seq{\zero}{k}$ has cardinality $n$. + Take $f$ such that $f$ is a bijection from $n$ to $\seq{\zero}{k}$. + We have $\suc{n} = n \union \{n\}$. + We show that $\seq{\zero}{n} = \seq{\zero}{k} \union \{\suc{k}\}$. + \begin{subproof} + We show that $\seq{\zero}{n} \subseteq \seq{\zero}{k} \union \{\suc{k}\}$. + \begin{subproof} + Omitted. + \end{subproof} + We show that $\seq{\zero}{k} \union \{\suc{k}\} \subseteq \seq{\zero}{n}$. + \begin{subproof} + Omitted. + \end{subproof} + %$\seq{\zero}{k} \subseteq \seq{\zero}{n}$. + \end{subproof} + We have $\{n\} \notin n$. + We have $n \notmeets \{n\}$. + Let $X = \suc{n}$. + Let $Y = \seq{\zero}{n}$. + Define $F : X \to Y$ such that $F(x) =$ + \begin{cases} + &f(x) &\text{if} x \in n\\ + &\suc{k} &\text{if} x \in \{n\} + \end{cases} + + \end{byCase} + %Assume $n$ is a natural number. %We show that $\seq{\zero}{\zero}$ has cardinality $1$. %\begin{subproof} % It suffices to show that $1 = \seq{\zero}{\zero}$. % Follows by set extensionality. %\end{subproof} + %It suffices to show that if $n \neq \zero$ then $\seq{\zero}{n}$ has cardinality $\suc{n}$. + %We show that for all $m \in \naturals$ such that $m \neq \zero$ we have $\seq{\zero}{m}$ has cardinality $\suc{m}$. + %\begin{subproof} + % Fix $m \in \naturals$. + % Take $k$ such that $k \in \naturals$ and $\suc{k} = m$. + % Then $k \in m$. + %\end{subproof} + + %For all $n \in \naturals$ we have either $n = \zero$ or there exist $m \in \naturals$ such that $n = \suc{m}$. %For all $n \in \naturals$ we have either $n = \zero$ or $\zero \in n$. %We show that if $\seq{\zero}{n}$ has cardinality $\suc{n}$ then $\seq{\zero}{\suc{n}}$ has cardinality $\suc{\suc{n}}$. @@ -120,6 +168,10 @@ %\end{subproof} \end{proof} +%\begin{proposition}\label{seq_zero_to_n_isomorph_to_suc_n} +% For all $n \in \naturals$ we have $\seq{\zero}{n}$ has cardinality $\suc{n}$. +%\end{proposition} +% \begin{proposition}\label{existence_normal_ordered_urysohn} Let $X$ be a urysohn space. Suppose $U$ is a urysohnchain of $X$. -- cgit v1.2.3