From 08019dcdaf3b13bb8ce554dfd5377690bb508c6d Mon Sep 17 00:00:00 2001 From: Simon-Kor <52245124+Simon-Kor@users.noreply.github.com> Date: Tue, 7 May 2024 18:08:04 +0200 Subject: formalisation mertic optimized --- library/topology/metric-space.tex | 41 ++++++++++++++++++++++++++------------- 1 file changed, 27 insertions(+), 14 deletions(-) (limited to 'library/topology') diff --git a/library/topology/metric-space.tex b/library/topology/metric-space.tex index 7021a60..2a31d95 100644 --- a/library/topology/metric-space.tex +++ b/library/topology/metric-space.tex @@ -4,23 +4,22 @@ \section{Metric Spaces} -\begin{abbreviation}\label{metric} - $f$ is a metric iff $f$ is a function to $\reals$. -\end{abbreviation} - -\begin{axiom}\label{metric_axioms} - $f$ is a metric iff $\dom{f} = A \times A$ and - for all $x,y,z \in A$ we have +\begin{definition}\label{metric} + $f$ is a metric on $M$ iff $f$ is a function from $M \times M$ to $\reals$ and + for all $x,y,z \in M$ we have $f(x,x) = \zero$ and $f(x,y) = f(y,x)$ and $f(x,y) \leq f(x,z) + f(z,y)$ and if $x \neq y$ then $\zero < f(x,y)$. -\end{axiom} +\end{definition} \begin{definition}\label{open_ball} - $\openball{r}{x}{f} = \{z \in M \mid \text{ $f$ is a metric and $\dom{f} = M \times M$ and $f(x,z)