From 3795588d157864a411baf2fc3afb31f9f5184d93 Mon Sep 17 00:00:00 2001 From: Simon-Kor <52245124+Simon-Kor@users.noreply.github.com> Date: Tue, 7 May 2024 14:41:15 +0200 Subject: Formalization of metric spaces and some cleaning of numbers.tex Formalization of metric spaces: Therefore we introduced the predicate metric and its axiomatization. Then we introduced the term metric space in dependence of a metric function. This metric space is automatically a a topological space. --- library/topology/metric-space.tex | 80 +++++++++++++++++++++++++++++++++++++ library/topology/order-topology.tex | 32 +++++++++++++-- 2 files changed, 109 insertions(+), 3 deletions(-) create mode 100644 library/topology/metric-space.tex (limited to 'library/topology') diff --git a/library/topology/metric-space.tex b/library/topology/metric-space.tex new file mode 100644 index 0000000..7021a60 --- /dev/null +++ b/library/topology/metric-space.tex @@ -0,0 +1,80 @@ +\import{topology/topological-space.tex} +\import{numbers.tex} +\import{function.tex} + +\section{Metric Spaces} + +\begin{abbreviation}\label{metric} + $f$ is a metric iff $f$ is a function to $\reals$. +\end{abbreviation} + +\begin{axiom}\label{metric_axioms} + $f$ is a metric iff $\dom{f} = A \times A$ and + for all $x,y,z \in A$ we have + $f(x,x) = \zero$ and + $f(x,y) = f(y,x)$ and + $f(x,y) \leq f(x,z) + f(z,y)$ and + if $x \neq y$ then $\zero < f(x,y)$. +\end{axiom} + +\begin{definition}\label{open_ball} + $\openball{r}{x}{f} = \{z \in M \mid \text{ $f$ is a metric and $\dom{f} = M \times M$ and $f(x,z)