From 442d732696ad431b84f6e5c72b6ee785be4fd968 Mon Sep 17 00:00:00 2001 From: adelon <22380201+adelon@users.noreply.github.com> Date: Sat, 10 Feb 2024 02:22:14 +0100 Subject: Initial commit --- library/topology/basis.tex | 45 ++++++ library/topology/disconnection.tex | 44 ++++++ library/topology/preclosure.tex | 18 +++ library/topology/separation.tex | 124 ++++++++++++++++ library/topology/topological-space.tex | 258 +++++++++++++++++++++++++++++++++ 5 files changed, 489 insertions(+) create mode 100644 library/topology/basis.tex create mode 100644 library/topology/disconnection.tex create mode 100644 library/topology/preclosure.tex create mode 100644 library/topology/separation.tex create mode 100644 library/topology/topological-space.tex (limited to 'library/topology') diff --git a/library/topology/basis.tex b/library/topology/basis.tex new file mode 100644 index 0000000..dda187c --- /dev/null +++ b/library/topology/basis.tex @@ -0,0 +1,45 @@ +\import{topology/topological-space.tex} + +\subsection{Topological basis} + +\begin{abbreviation}\label{covers} + $C$ covers $X$ iff + for all $x\in X$ there exists $U\in C$ such that $x\in U$. +\end{abbreviation} + +\begin{proposition}\label{covers_unions_intro} + Suppose $C$ covers $X$. + Then $X\subseteq\unions{C}$. +\end{proposition} + +\begin{proposition}\label{covers_unions_elim} + Suppose $X\subseteq\unions{C}$. + Then $C$ covers $X$. +\end{proposition} + +% Also called "prebase", "subbasis", or "subbase". We prefer "pre-" or "quasi-" +% for consistency when handling generalizations, even if "subbasis" is more common. +\begin{abbreviation}\label{topological_prebasis} + $B$ is a topological prebasis for $X$ iff $\unions{B} = X$. +\end{abbreviation} + +\begin{proposition}\label{topological_prebasis_iff_covering_family} + $B$ is a topological prebasis for $X$ iff + $B$ is a family of subsets of $X$ and $B$ covers $X$. +\end{proposition} +\begin{proof} + If $B$ is a family of subsets of $X$ and $B$ covers $X$, + then $\unions{B} = X$ + by \cref{subseteq_antisymmetric,unions_family,covers_unions_intro}. + If $\unions{B} = X$, + then $B$ is a family of subsets of $X$ and $B$ covers $X$ + by \cref{covers_unions_intro,subseteq_refl,covers_unions_elim}. +\end{proof} + +% Also called "base of topology". +\begin{definition}\label{topological_basis} + $B$ is a topological basis for $X$ iff + $B$ is a topological prebasis for $X$ and + for all $U, V, x$ such that $U, V\in B$ and $x\in U,V$ + there exists $W\in B$ such that $x\in W\subseteq U, V$. +\end{definition} diff --git a/library/topology/disconnection.tex b/library/topology/disconnection.tex new file mode 100644 index 0000000..e3730f3 --- /dev/null +++ b/library/topology/disconnection.tex @@ -0,0 +1,44 @@ +\import{set.tex} +\import{set/bipartition.tex} +\import{topology/topological-space.tex} + +\subsection{Disconnections} + +\begin{definition}\label{disconnections} + $\disconnections{X} = \{ p\in\bipartitions{\carrier[X]} \mid \text{$\fst{p},\snd{p}\in\opens[X]$} \}$. +\end{definition} + +\begin{abbreviation}\label{is_a_disconnection} + $D$ is a disconnection of $X$ iff $D\in\disconnections{X}$. +\end{abbreviation} + +\begin{definition}\label{disconnected} + $X$ is disconnected iff there exist $U, V\in\opens[X]$ + such that $\carrier[X]$ is partitioned by $U$ and $V$. +\end{definition} + +\begin{proposition}\label{disconnection_from_disconnected} + Let $X$ be a topological space. + Suppose $X$ is disconnected. + Then there exists a disconnection of $X$. +\end{proposition} +\begin{proof} + Take $U, V\in\opens[X]$ such that $\carrier[X]$ is partitioned by $U$ and $V$ + by \cref{disconnected}. + Then $(U, V)$ is a bipartition of $\carrier[X]$. + Thus $(U, V)$ is a disconnection of $X$ by \cref{disconnections,times_proj_elim,times_tuple_intro}. +\end{proof} + +\begin{proposition}\label{disconnected_from_disconnection} + Let $X$ be a topological space. + Let $D$ be a disconnection of $X$. + Then $X$ is disconnected. +\end{proposition} +\begin{proof} + $\fst{D}, \snd{D}\in\opens[X]$. + $\carrier[X]$ is partitioned by $\fst{D}$ and $\snd{D}$. +\end{proof} + +\begin{abbreviation}\label{connected} + $X$ is connected iff $X$ is not disconnected. +\end{abbreviation} diff --git a/library/topology/preclosure.tex b/library/topology/preclosure.tex new file mode 100644 index 0000000..6c104be --- /dev/null +++ b/library/topology/preclosure.tex @@ -0,0 +1,18 @@ +\import{set.tex} + +\section{Preclosure spaces} + + +\begin{struct} + A preclosure space $X$ is a onesorted structure equipped with + \begin{enumerate} + \item $\cl$ + \end{enumerate} + such that + \begin{enumerate} + \item For all $Y\subseteq X$ we have $\cl(Y)\subseteq X$. + \item $\cl(\emptyset) = \emptyset$. + \item For all $A$ we have $A\subseteq \cl(A)$. + \item For all $A, B$ we have $\cl(A\union B) = \cl(A) \union \cl(B)$. + \end{enumerate} +\end{struct} diff --git a/library/topology/separation.tex b/library/topology/separation.tex new file mode 100644 index 0000000..f70cb50 --- /dev/null +++ b/library/topology/separation.tex @@ -0,0 +1,124 @@ +\import{topology/topological-space.tex} + + +% T0 separation +\begin{definition}\label{is_kolmogorov} + $X$ is Kolmogorov iff + for all $x,y\in\carrier[X]$ such that $x\neq y$ + there exist $U\in\opens[X]$ such that + $x\in U\not\ni y$ or $x\notin U\ni y$. +\end{definition} + +\begin{abbreviation}\label{kolmogorov_space} + $X$ is a Kolmogorov space iff $X$ is a topological space and + $X$ is Kolmogorov. +\end{abbreviation} + +\begin{abbreviation}\label{teezero} + $X$ is \teezero\ iff $X$ is Kolmogorov. +\end{abbreviation} + +\begin{abbreviation}\label{teezero_space} + $X$ is a \teezero-space iff $X$ is a Kolmogorov space. +\end{abbreviation} + +\begin{proposition}\label{kolmogorov_implies_kolmogorov_for_closeds} + Suppose $X$ is a Kolmogorov space. + Let $x,y\in\carrier[X]$. + Suppose $x\neq y$. + Then there exist $A\in\closeds{X}$ such that + $x\in A\not\ni y$ or $x\notin A\ni y$. +\end{proposition} +\begin{proof} + Take $U\in\opens[X]$ such that $x\in U\not\ni y$ or $x\notin U\ni y$ + by \cref{is_kolmogorov}. + Then $\carrier[X]\setminus U\in\closeds{X}$ by \cref{complement_of_open_elem_closeds}. + Now $x\in (\carrier[X]\setminus U)\not\ni y$ or $x\notin (\carrier[X]\setminus U)\ni y$ + by \cref{setminus}. +\end{proof} + +\begin{proposition}\label{kolmogorov_for_closeds_implies_kolmogorov} + Suppose for all $x,y\in\carrier[X]$ such that $x\neq y$ + there exist $U\in\closeds{X}$ such that + $x\in U\not\ni y$ or $x\notin U\ni y$. + Then $X$ is Kolmogorov. +\end{proposition} +\begin{proof} + Follows by \cref{closeds,is_closed_in,is_kolmogorov,setminus}. +\end{proof} + +\begin{proposition}\label{kolmogorov_iff_kolmogorov_for_closeds} + Let $X$ be a topological space. + $X$ is Kolmogorov iff + for all $x,y\in\carrier[X]$ such that $x\neq y$ + there exist $U\in\closeds{X}$ such that + $x\in U\not\ni y$ or $x\notin U\ni y$. +\end{proposition} +\begin{proof} + Follows by \cref{kolmogorov_implies_kolmogorov_for_closeds,kolmogorov_for_closeds_implies_kolmogorov}. +\end{proof} + +% T1 separation (Fréchet topology) +\begin{definition}\label{teeone} + $X$ is \teeone\ iff + for all $x,y\in\carrier[X]$ such that $x\neq y$ + there exist $U, V\in\opens[X]$ such that + $U\ni x\notin V$ and $V\ni y\notin U$. +\end{definition} + +\begin{abbreviation}\label{teeone_space} + $X$ is a \teeone-space iff $X$ is a topological space and + $X$ is \teeone. +\end{abbreviation} + +\begin{proposition}\label{teeone_implies_singletons_closed} + Let $X$ be a \teeone-space. + Then for all $x\in\carrier[X]$ we have $\{x\}$ is closed in $X$. +\end{proposition} +\begin{proof} + Omitted. + % TODO + % Choose for every y distinct from x and open subset U_y containing y but not x. + % The union U of all the U_y is open. + % {x} is the complement of U in \carrier[X]. +\end{proof} +% +% Conversely, if \{x\} is open, then for any y distinct from x we can use +% X\setminus\{x\} as the open neighbourhood of y. + +% T2 separation +\begin{definition}\label{is_hausdorff} + $X$ is Hausdorff iff + for all $x,y\in\carrier[X]$ such that $x\neq y$ + there exist $U, V\in\opens[X]$ such that + $x\in U$ and $y\in V$ and $U$ is disjoint from $V$. +\end{definition} + +\begin{abbreviation}\label{hausdorff_space} + $X$ is a Hausdorff space iff $X$ is a topological space and + $X$ is Hausdorff. +\end{abbreviation} + +\begin{abbreviation}\label{teetwo} + $X$ is \teetwo\ iff $X$ is Hausdorff. +\end{abbreviation} + +\begin{abbreviation}\label{teetwo_space} + $X$ is a \teetwo-space iff $X$ is a Hausdorff space. +\end{abbreviation} + +\begin{proposition}\label{teeone_space_is_teezero_space} + Let $X$ be a \teeone-space. + Then $X$ is a \teezero-space. +\end{proposition} +\begin{proof} + Follows by \cref{is_kolmogorov,teeone}. +\end{proof} + +\begin{proposition}\label{teetwo_space_is_teeone_space} + Let $X$ be a \teetwo-space. + Then $X$ is a \teeone-space. +\end{proposition} +\begin{proof} + Omitted. % TODO +\end{proof} diff --git a/library/topology/topological-space.tex b/library/topology/topological-space.tex new file mode 100644 index 0000000..e467d48 --- /dev/null +++ b/library/topology/topological-space.tex @@ -0,0 +1,258 @@ +\import{set.tex} +\import{set/powerset.tex} + +\section{Topological spaces} + +\begin{struct}\label{topological_space} + A topological space $X$ is a onesorted structure equipped with + \begin{enumerate} + \item $\opens$ + \end{enumerate} + such that + \begin{enumerate} + \item\label{opens_type} $\opens[X]$ is a family of subsets of $\carrier[X]$. + \item\label{emptyset_open} $\emptyset\in\opens[X]$. + \item\label{carrier_open} $\carrier[X]\in\opens[X]$. + \item\label{opens_inter} For all $A, B\in \opens[X]$ we have $A\inter B\in\opens[X]$. + \item\label{opens_unions} For all $F\subseteq \opens[X]$ we have $\unions{F}\in\opens[X]$. + \end{enumerate} +\end{struct} + +\begin{abbreviation}\label{is_open_in} + $U$ is open iff $U\in\opens$. +\end{abbreviation} + +\begin{abbreviation}\label{is_open} + $U$ is open in $X$ iff $U\in\opens[X]$. +\end{abbreviation} + +\begin{proposition}\label{union_open} + Let $X$ be a topological space. + Suppose $A$, $B$ are open. + Then $A\union B$ is open. +\end{proposition} +\begin{proof} + $\{A, B\}\subseteq \opens$. + $\unions{\{A, B\}}$ is open. + $\unions{\{A, B\}} = A\union B$. +\end{proof} + +\begin{definition}[Interiors]\label{interiors} + $\interiors{A}{X} = \{ U\in\opens[X]\mid U\subseteq A\}$. +\end{definition} + +\begin{definition}[Interior]\label{interior} + $\interior{A}{X} = \unions{\interiors{A}{X}}$. +\end{definition} + +\begin{proposition}[Interior]\label{interior_elem_intro} + Suppose $U\in\opens[X]$ and $a\in U\subseteq A$. + Then $a\in\interior{A}{X}$. +\end{proposition} +\begin{proof} + $U\in\interiors{A}{X}$. +\end{proof} + +\begin{proposition}[Interior]\label{interior_elem_elim} + Suppose $a\in\interior{A}{X}$. + Then there exists $U\in\opens[X]$ + such that $a\in U\subseteq A$. +\end{proposition} +\begin{proof} + Take $U\in\interiors{A}{X}$ such that $a\in U$. +\end{proof} + +\begin{proposition}[Interior]\label{interior_elem_iff} + $a\in\interior{A}{X}$ iff + there exists $U\in\opens[X]$ + such that $a\in U\subseteq A$. +\end{proposition} +\begin{proof} + Follows by \cref{interior_elem_intro,interior_elem_elim}. +\end{proof} + +\begin{proposition}\label{interior_of_open} + Let $X$ be a topological space. + Suppose $U$ is open in $X$. + Then $\interior{U}{X} = U$. +\end{proposition} +\begin{proof} + $U\in\interiors{U}{X}$. + Follows by \cref{subseteq,interior_elem_iff,neq_witness}. +\end{proof} + +\begin{proposition}\label{interior_is_open} + Let $X$ be a topological space. + Then $\interior{A}{X}$ is open. +\end{proposition} +\begin{proof} + $\interiors{A}{X}\subseteq\opens[X]$. +\end{proof} + +\begin{proposition}\label{interior_subseteq} + Then $\interior{A}{X}\subseteq A$. +\end{proposition} + +\begin{proposition}\label{interior_maximal} + Let $X$ be a topological space. + Suppose $U\subseteq A\subseteq \carrier[X]$. + Suppose $U$ is open. + Then $U\subseteq \interior{A}{X}$. +\end{proposition} + +\begin{proposition}\label{interior_eq_self_implies_open} + Let $X$ be a topological space. + Suppose $\interior{A}{X} = A$. + Then $A$ is open. +\end{proposition} + +\begin{corollary}\label{interior_eq_self_iff_open} + Let $X$ be a topological space. + Then $\interior{A}{X} = A$ iff $A$ is open in $X$. +\end{corollary} + +\begin{proposition}\label{interior_carrier} + Let $X$ be a topological space. + $\interior{\carrier[X]}{X} = \carrier[X]$. +\end{proposition} +\begin{proof} + $\carrier[X]\in\opens[X]$. + $\carrier[X]\subseteq\carrier[X]$ by \cref{subseteq_refl}. + Thus $\carrier[X]\in\interiors{\carrier[X]}{X}$ by \cref{interiors}. + Follows by set extensionality. +\end{proof} + +\begin{proposition}\label{interior_type} + Let $X$ be a topological space. + Then $\interior{A}{X}\in\pow{\carrier[X]}$. +\end{proposition} +\begin{proof} + We have $\interiors{A}{X}\subseteq \pow{\carrier[X]}$. + % As they are open subsets of X containing A + % + Thus $\interior{A}{X}\subseteq \carrier[X]$ by \cref{interior,unions_subseteq_of_powerset_is_subseteq}. +\end{proof} + +\subsection{Closed sets} + +\begin{definition}\label{is_closed_in} + $A$ is closed in $X$ iff $\carrier[X]\setminus A$ is open in $X$. +\end{definition} + +\begin{abbreviation}\label{is_clopen_in} + $A$ is clopen in $X$ iff $A$ is open in $X$ and closed in $X$. +\end{abbreviation} + +\begin{proposition}\label{emptyset_is_closed} + Let $X$ be a topological space. + Then $\emptyset$ is closed in $X$. +\end{proposition} +\begin{proof} + $\carrier[X]\setminus \emptyset = \carrier[X]$. +\end{proof} + +\begin{proposition}\label{carrier_is_closed} + Let $X$ be a topological space. + Then $\emptyset$ is closed in $X$. +\end{proposition} +\begin{proof} + $\carrier[X]\setminus \carrier[X] = \emptyset$. +\end{proof} + +\begin{definition}[Closed sets]\label{closeds} + $\closeds{X} = \{ A\in\pow{\carrier[X]}\mid\text{$A$ is closed in $X$}\}$. +\end{definition} + +\begin{proposition}\label{complement_of_open_elem_closeds} + Let $X$ be a topological space. + Let $U\in\opens[X]$. + Then $\carrier[X]\setminus U\in\closeds{X}$. +\end{proposition} +\begin{proof} + $\carrier[X]\setminus U\in\pow{\carrier[X]}$. + $U\subseteq\carrier[X]$ by \cref{opens_type}. + Hence $\carrier[X]\setminus(\carrier[X]\setminus U) = U$ by \cref{double_relative_complement}. + $\carrier[X]\setminus U$ is closed in $X$. +\end{proof} + + +\begin{definition}[Closed covers]\label{closures} + $\closures{A}{X} = \{ D\in\pow{\carrier[X]}\mid \text{$A\subseteq D$ and $D$ is closed in $X$}\}$. +\end{definition} + +\begin{definition}[Closure]\label{closure} + $\closure{A}{X} = \inters{\closures{A}{X}}$. +\end{definition} + +\begin{proposition}\label{closure_emptyset} + Let $X$ be a topological space. + Then $\closure{\emptyset}{X} = \emptyset$. +\end{proposition} +\begin{proof} + $\emptyset\in\closures{\emptyset}{X}$. +\end{proof} + +\begin{proposition}\label{closure_carrier} + Let $X$ be a topological space. + Then $\closure{\carrier[X]}{X} = \carrier[X]$. +\end{proposition} +\begin{proof} + %For all $D\in\closures{\carrier[X]}{X}$ we have $\carrier[X]\subseteq D$ by \cref{closures}. + %For all $D\in\closures{\carrier[X]}{X}$ we have $\carrier[X]\supseteq D$ by \cref{pow_iff,closures}. + %For all $D\in\closures{\carrier[X]}{X}$ we have $\carrier[X] = D$ by \cref{subseteq_antisymmetric}. + For all $D\in\closures{\carrier[X]}{X}$ we have $\carrier[X] = D$ + by \cref{pow_iff,closures,subseteq_antisymmetric}. + Now $\carrier[X]\in\closures{\carrier[X]}{X}$. + Thus $\closures{\carrier[X]}{X} = \{\carrier[X]\}$ + by \cref{singleton_iff_inhabited_subsingleton}. + Follows by \cref{inters_singleton,closure}. +\end{proof} + + +\begin{proposition}%[Complement of interior equals closure of complement] +\label{complement_interior_eq_closure_complement} + $\carrier[X]\setminus\interior{A}{X} = \closure{(\carrier[X]\setminus A)}{X}$. +\end{proposition} +\begin{proof} + Omitted. % Use general De Morgan's Law in Pow|X| +\end{proof} + +\begin{definition}[Frontier]\label{frontier} + $\frontier{A}{X} = \closure{A}{X}\setminus\interior{A}{X}$. +\end{definition} + + + +\begin{proposition}%[Frontier as intersection of closures] +\label{frontier_as_inter} + $\frontier{A}{X} = \closure{A}{X} \inter \closure{(\carrier[X]\setminus A)}{X}$. +\end{proposition} +\begin{proof} + % TODO + Omitted. + %$\frontier{A}{X} = \closure{A}{X}\setminus\interior{A}{X}$. % by frontier (definition) + %$\closure{A}{X}\setminus\interior{A}{X} = \closure{A}{X}\inter(\carrier[X]\setminus\interior{A}{X})$. % by setminus_eq_inter_complement + %$\closure{A}{X}\inter(\carrier[X]\setminus\interior{A}{X}) = \closure{A}{X} \inter \closure{(\carrier[X]\setminus A)}{X}$. % by complement_interior_eq_closure_complement +\end{proof} + +\begin{proposition}\label{frontier_of_emptyset} + Let $X$ be a topological space. + Then $\frontier{\emptyset}{X} = \emptyset$. +\end{proposition} +\begin{proof} + Follows by set extensionality. +\end{proof} + +\begin{proposition}\label{frontier_of_carrier} + Let $X$ be a topological space. + Then $\frontier{\carrier[X]}{X} = \emptyset$. +\end{proposition} +\begin{proof} + $\frontier{\carrier[X]}{X} = \carrier[X]\setminus\carrier[X]$ + by \cref{frontier,interior_carrier,closure_carrier}. + Follows by \cref{setminus_self}. +\end{proof} + +\begin{definition}\label{neighbourhoods} + $\neighbourhoods{x}{X} = \{U\in\opens[X] \mid x\in U\}$. +\end{definition} -- cgit v1.2.3