From ee24a73a01608125e6648f7b66d9c679e955009d Mon Sep 17 00:00:00 2001 From: Simon-Kor <52245124+Simon-Kor@users.noreply.github.com> Date: Tue, 13 Aug 2024 23:51:57 +0200 Subject: less urysohn --- library/topology/urysohn.tex | 182 +++++++++++++++++++++++++++++++------------ 1 file changed, 132 insertions(+), 50 deletions(-) (limited to 'library/topology') diff --git a/library/topology/urysohn.tex b/library/topology/urysohn.tex index c94dbd4..ba9780a 100644 --- a/library/topology/urysohn.tex +++ b/library/topology/urysohn.tex @@ -1,11 +1,17 @@ \import{topology/topological-space.tex} \import{topology/separation.tex} \import{topology/continuous.tex} +\import{topology/basis.tex} \import{numbers.tex} \import{function.tex} \import{set.tex} \import{cardinal.tex} \import{relation.tex} +\import{relation/uniqueness.tex} +\import{set/cons.tex} +\import{set/powerset.tex} +\import{set/fixpoint.tex} +\import{set/product.tex} \section{Urysohns Lemma} % In this section we want to proof Urysohns lemma. @@ -337,33 +343,8 @@ The first tept will be a formalisation of chain constructions. \end{proof} -\begin{lemma}\label{fraction1} - Let $x \in \reals$. - Then for all $y \in \reals$ such that $x \neq y$ we have there exists $r \in \rationals$ such that $y < r < x$ or $x < r < y$. -\end{lemma} -\begin{proof} - Omitted. -\end{proof} -\begin{lemma}\label{frection2} - Suppose $a,b \in \reals$. - Suppose $a < b$. - Then $\intervalopen{a}{b}$ is infinite. -\end{lemma} -\begin{proof} - Omitted. -\end{proof} -\begin{lemma}\label{frection3} - Suppose $a,b \in \reals$. - Suppose $\zero < a < 1$. - Suppose $\zero < b < 1$. - % Here take exist n such that n/2^n is between a and b - T -\end{lemma} -\begin{proof} - Omitted. -\end{proof} \begin{proposition}\label{existence_of_staircase_function} @@ -449,6 +430,86 @@ The first tept will be a formalisation of chain constructions. $\realsplus = \reals \setminus \realsminus$. \end{abbreviation} +\begin{proposition}\label{intervalclosed_subseteq_reals} + Suppose $a,b \in \reals$. + Suppose $a < b$. + Then $\intervalclosed{a}{b} \subseteq \reals$. +\end{proposition} + + + +\begin{lemma}\label{fraction1} + Let $x \in \reals$. + Then for all $y \in \reals$ such that $x \neq y$ we have there exists $r \in \rationals$ such that $y < r < x$ or $x < r < y$. +\end{lemma} +\begin{proof} + Omitted. +\end{proof} + +\begin{lemma}\label{frection2} + Suppose $a,b \in \reals$. + Suppose $a < b$. + Then $\intervalopen{a}{b}$ is infinite. +\end{lemma} +\begin{proof} + Omitted. +\end{proof} + +\begin{lemma}\label{frection3} + Suppose $a \in \reals$. + Suppose $a < \zero$. + Then there exist $N \in \naturals$ such that for all $N' \in \naturals$ such that $N' > N$ we have $\zero < \rfrac{1}{\pot(N')} < a$. +\end{lemma} +\begin{proof} + Omitted. +\end{proof} + +\begin{proposition}\label{fraction4} + Suppose $a,b,\epsilon \in \reals$. + Suppose $\epsilon > \zero$. + $\abs{a - b} < \epsilon$ iff $b \in \intervalopen{(a - \epsilon)}{(a + \epsilon)}$. +\end{proposition} +\begin{proof} + Omitted. +\end{proof} + +\begin{proposition}\label{fraction5} + Suppose $a,b,\epsilon \in \reals$. + Suppose $\epsilon > \zero$. + $b \in \intervalopen{(a - \epsilon)}{(a + \epsilon)}$ iff $a \in \intervalopen{(b - \epsilon)}{(b + \epsilon)}$. +\end{proposition} +\begin{proof} + Omitted. +\end{proof} + +\begin{proposition}\label{fraction6} + Suppose $a,\epsilon \in \reals$. + Suppose $\epsilon > \zero$. + $\intervalopen{(a - \epsilon)}{(a + \epsilon)} = \{r \in \reals \mid (a - \epsilon) < r < (a + \epsilon)\} $. +\end{proposition} + +\begin{abbreviation}\label{epsilonball} + $\epsBall{a}{\epsilon} = \intervalopen{(a - \epsilon)}{(a + \epsilon)}$. +\end{abbreviation} + +\begin{proposition}\label{fraction7} + Suppose $a,\epsilon \in \reals$. + Suppose $\epsilon > \zero$. + Then there exist $b \in \rationals$ such that $b \in \epsBall{a}{\epsilon}$. +\end{proposition} +\begin{proof} + Omitted. +\end{proof} + + + +% Note this could maybe reslove some issues!!!! +\begin{definition}\label{sequencetwo} + $Z$ is a sequencetwo iff $Z = (N,f,B)$ and $N \subseteq \naturals$ and $f$ is a bijection from $N$ to $B$. +\end{definition} + + + \begin{theorem}\label{urysohn} Let $X$ be a urysohn space. @@ -483,6 +544,8 @@ The first tept will be a formalisation of chain constructions. Omitted. \end{subproof} + For all $n \in \naturals$ we have $\index[\zeta](n)$ is a urysohnchain in $X$. + We show that for all $n \in \indexset[\zeta]$ we have $\index[\zeta](n)$ has cardinality $\pot(n)$. \begin{subproof} Omitted. @@ -493,6 +556,11 @@ The first tept will be a formalisation of chain constructions. Omitted. \end{subproof} + We show that for all $m \in \naturals$ we have $\pot(m) \in \naturals$. + \begin{subproof} + Omitted. + \end{subproof} + We show that for all $m \in \indexset[\zeta]$ we have there exist $f$ such that $f \in \funs{\carrier[X]}{\intervalclosed{\zero}{1}}$ and for all $n \in \indexset[\index[\zeta](m)]$ we have for all $x \in \index[\index[\zeta](m)](n)$ @@ -545,37 +613,56 @@ The first tept will be a formalisation of chain constructions. Let $\gamma(n) = \apply{\gamma}{n}$ for $n \in \naturals$. - We show that for all $n \in \naturals$ we have $\gamma(n)$ is a function from $\carrier[X]$ to $\reals$. \begin{subproof} Omitted. \end{subproof} - We show that for all $n \in \naturals$ for all $x \in \carrier[X]$ we have $\apply{\gamma(n)}{x} \in \intervalclosed{\zero}{1}$. + + We show that for all $n \in \naturals$ we have $\gamma(n)$ + is a function from $\carrier[X]$ to $\intervalclosed{\zero}{1}$. \begin{subproof} Omitted. \end{subproof} + We show that $\gamma$ is a function from $\naturals$ to $\reals$. + \begin{subproof} + Omitted. + \end{subproof} + + We show that for all $x,k,n$ such that $n\in \naturals$ and $k \in \naturals$ and $x \in \index[\index[\zeta](n)](k)$ we have $\apply{\gamma(n)}{x} = \rfrac{k}{\pot(n)}$. + \begin{subproof} + Omitted. + \end{subproof} + + We show that for all $n \in \naturals$ for all $x \in \carrier[X]$ we have $\apply{\gamma(n)}{x} \in \intervalclosed{\zero}{1}$. + \begin{subproof} + Fix $n \in \naturals$. + Fix $x \in \carrier[X]$. + \end{subproof} - We show that there exist $g$ such that - for all $x \in \carrier[X]$ we have - there exist $k \in \reals$ such that - for all $\epsilon \in \reals$ such that $\epsilon > \zero$ we have - there exist $N \in \naturals$ such that - for all $N' \in \naturals$ such that $N' > N$ we have - $\abs{\apply{\gamma(n)}{x} - k} < \epsilon$ and $g(x)= k$. + + We show that + if $h$ is a function from $\naturals$ to $\reals$ and for all $n \in \naturals$ we have $h(n) \leq h(n+1)$ and there exist $B \in \reals$ such that $h(n) < B$ + then there exist $k \in \reals$ such that for all $m \in \naturals$ we have $h(m) \leq k$ and for all $k' \in \reals$ such that $k' < k$ we have there exist $M \in \naturals$ such that $k' < h(M)$. + \begin{subproof} + Omitted. + \end{subproof} + + + + We show that there exist $g$ such that for all $x \in \carrier[X]$ we have there exist $k \in \reals$ such that $g(x)= k$ and for all $\epsilon \in \reals$ such that $\epsilon > \zero$ we have there exist $N \in \naturals$ such that for all $N' \in \naturals$ such that $N' > N$ we have $\abs{\apply{\gamma(N')}{x} - k} < \epsilon$. \begin{subproof} - We show that for all $x \in \carrier[X]$ we have - there exist $k \in \reals$ such that - for all $\epsilon \in \reals$ such that $\epsilon > \zero$ we have - there exist $N \in \naturals$ such that - for all $N' \in \naturals$ such that $N' > N$ we have - $\abs{\apply{\gamma(n)}{x} - k} < \epsilon$. + We show that for all $x \in \carrier[X]$ we have there exist $k \in \reals$ such that for all $\epsilon \in \reals$ such that $\epsilon > \zero$ we have there exist $N \in \naturals$ such that for all $N' \in \naturals$ such that $N' > N$ we have $\abs{\apply{\gamma(N')}{x} - k} < \epsilon$. \begin{subproof} Fix $x \in \carrier[X]$. - Follows by \cref{two_in_naturals,function_apply_default,reals_axiom_zero_in_reals,dom_emptyset,notin_emptyset,funs_type_apply,neg,minus,abs_behavior1}. + + + + % Contradiction by \cref{two_in_naturals,function_apply_default,reals_axiom_zero_in_reals,dom_emptyset,notin_emptyset,funs_type_apply,neg,minus,abs_behavior1}. + %Follows by \cref{two_in_naturals,function_apply_default,reals_axiom_zero_in_reals,dom_emptyset,notin_emptyset,funs_type_apply,neg,minus,abs_behavior1}. \end{subproof} \end{subproof} @@ -588,20 +675,15 @@ The first tept will be a formalisation of chain constructions. Fix $x \in \dom{G}$. It suffices to show that $g(x) \in \reals$. - There exist $k \in \reals$ such that for all $\epsilon \in \reals$ such that $\epsilon > \zero$ we have there exist $N \in \naturals$ such that for all $N' \in \naturals$ such that $N' > N$ we have $\abs{\apply{\gamma(n)}{x} - k} < \epsilon$. + There exist $k \in \reals$ such that for all $\epsilon \in \reals$ such that $\epsilon > \zero$ we have there exist $N \in \naturals$ such that for all $N' \in \naturals$ such that $N' > N$ we have $\abs{\apply{\gamma(N')}{x} - k} < \epsilon$. - We show that for all $\epsilon \in \reals$ such that $\epsilon > \zero$ we have there exist $N \in \naturals$ such that for all $N' \in \naturals$ such that $N' > N$ we have $\abs{\apply{\gamma(n)}{x} - g(x)} < \epsilon$ and $g(x)= k$. + We show that for all $\epsilon \in \reals$ such that $\epsilon > \zero$ we have there exist $N \in \naturals$ such that for all $N' \in \naturals$ such that $N' > N$ we have $\abs{\apply{\gamma(N')}{x} - g(x)} < \epsilon$ and $g(x)= k$. \begin{subproof} Fix $\epsilon \in \reals$. - %Assume $\epsilon > \zero$. - %Take $N' \in \naturals$ such that $\epsilon > \rfrac{1}{\pot(N')}$. - \end{subproof} - - - + + \end{subproof} Follows by \cref{apply,plus_one_order,ordinal_iff_suc_ordinal,natural_number_is_ordinal,subseteq,naturals_subseteq_reals,naturals_is_equal_to_two_times_naturals,reals_one_bigger_zero,one_in_reals,ordinal_prec_trichotomy,omega_is_an_ordinal,suc_intro_self,two_in_naturals,in_asymmetric,suc}. - \end{subproof} We show that for all $x \in \dom{G}$ we have $\zero \leq G(x) \leq 1$. -- cgit v1.2.3