From f2690dcd548d51fa8024fe2410c797aa8af1180b Mon Sep 17 00:00:00 2001 From: Simon-Kor <52245124+Simon-Kor@users.noreply.github.com> Date: Mon, 17 Jun 2024 02:28:58 +0200 Subject: Completed proofs [stable] --- library/topology/topological-space.tex | 77 ++++++++++++++++++++++++++++------ 1 file changed, 64 insertions(+), 13 deletions(-) (limited to 'library/topology') diff --git a/library/topology/topological-space.tex b/library/topology/topological-space.tex index 2c6b98c..7ff588d 100644 --- a/library/topology/topological-space.tex +++ b/library/topology/topological-space.tex @@ -380,13 +380,19 @@ Therefore $a \in \carrier[X] \setminus (\unions{F'})$. \end{subproof} + + + We show that for all $a \in \carrier[X] \setminus (\unions{F'})$ we have $a \in \inters{F}$. \begin{subproof} - Fix $a \in \carrier[X] \setminus (\unions{F'})$. \begin{byCase} - \caseOf{$a = \emptyset$.} - Omitted. - \caseOf{$a \neq \emptyset$.} + \caseOf{$\inters{F} = \emptyset$.} + $F$ is inhabited. + Take $U$ such that $U \in F$. + Let $F'' = F \setminus \{U\}$. + There exist $U' \in F'$ such that $U' = \carrier[X] \setminus U$. + \caseOf{$\inters{F} \neq \emptyset$.} + Fix $a \in \carrier[X] \setminus (\unions{F'})$. $a \in \carrier[X]$. $a \notin \unions{F'}$. For all $A \in F'$ we have $a \notin A$. @@ -408,6 +414,30 @@ Suppose $A \subseteq \carrier[X]$. Then $\closure{A}{X}$ is closed in $X$. \end{proposition} +\begin{proof} + \begin{byCase} + \caseOf{$\closure{A}{X} = \emptyset$.} + Trivial. + \caseOf{$\closure{A}{X} \neq \emptyset$.} + $\closures{A}{X}$ is inhabited. + $\closures{A}{X} \subseteq \pow{\carrier[X]}$. + For all $B \in \closures{A}{X}$ we have $B$ is closed in $X$. + $\inters{\closures{A}{X}}$ is closed in $X$. + \end{byCase} +\end{proof} + +\begin{definition}\label{set_of_closeds} + $\closeds[X] = \{ Y \in \pow{\carrier[X]} \mid \text{$Y$ is closed in $X$}\}$. +\end{definition} + +\begin{proposition}\label{closure_is_minimal_closed_set} + Let $X$ be a topological space. + Suppose $A \subseteq \carrier[X]$. + For all $Y \in \closeds[X]$ such that $A \subseteq Y$ we have $\closure{A}{X} \subseteq Y$. +\end{proposition} +\begin{proof} + Follows by \cref{closure,set_of_closeds,inters_subseteq_elem,closures}. +\end{proof} \begin{proposition}\label{complement_interior_eq_closure_complement} Let $X$ be a topological space. @@ -432,24 +462,45 @@ \end{proof} + \begin{definition}[Frontier]\label{frontier} $\frontier{A}{X} = \closure{A}{X}\setminus\interior{A}{X}$. \end{definition} -\begin{proposition}\label{safe} %TODO: Remove!!! - $x \neq x$. +\begin{proposition}\label{closure_interior_frontier_is_in_carrier} + Let $X$ be a topological space. + Suppose $A \subseteq \carrier[X]$. + Then $\closure{A}{X}, \interior{A}{X}, \frontier{A}{X} \subseteq \carrier[X]$. +\end{proposition} + +\begin{proposition}\label{frontier_is_closed} + Let $X$ be a topological space. + Suppose $A \subseteq \carrier[X]$. + Then $\frontier{A}{X}$ is closed in $X$. +\end{proposition} +\begin{proof} + $\closure{A}{X}\setminus\interior{A}{X}$ is closed in $X$ by \cref{closure_interior_frontier_is_in_carrier,closure_is_closed,interior_is_open,closed_minus_open_is_closed}. +\end{proof} + +\begin{proposition}\label{setdifference_eq_intersection_with_complement} + Suppose $A,B \subseteq C$. + Then $A \setminus B = A \inter (C \setminus B)$. \end{proposition} -\begin{proposition}%[Frontier as intersection of closures] -\label{frontier_as_inter} + + +\begin{proposition}\label{frontier_as_inter} + Let $X$ be a topological space. + Suppose $A \subseteq \carrier[X]$. $\frontier{A}{X} = \closure{A}{X} \inter \closure{(\carrier[X]\setminus A)}{X}$. \end{proposition} \begin{proof} - % TODO - %Omitted. - %$\frontier{A}{X} = \closure{A}{X}\setminus\interior{A}{X}$. % by frontier (definition) - %$\closure{A}{X}\setminus\interior{A}{X} = \closure{A}{X}\inter(\carrier[X]\setminus\interior{A}{X})$. % by setminus_eq_inter_complement - %$\closure{A}{X}\inter(\carrier[X]\setminus\interior{A}{X}) = \closure{A}{X} \inter \closure{(\carrier[X]\setminus A)}{X}$. % by complement_interior_eq_closure_complement + \begin{align*} + \frontier{A}{X} \\ + &= \closure{A}{X}\setminus\interior{A}{X} \\ + &= \closure{A}{X} \inter (\carrier[X] \setminus \interior{A}{X}) \explanation{by \cref{setdifference_eq_intersection_with_complement,closure_interior_frontier_is_in_carrier}}\\ + &= \closure{A}{X} \inter \closure{(\carrier[X]\setminus A)}{X} \explanation{by \cref{complement_interior_eq_closure_complement}} + \end{align*} \end{proof} \begin{proposition}\label{frontier_of_emptyset} -- cgit v1.2.3