From 3147c70e46d61a4bef863a066f521d302629b51f Mon Sep 17 00:00:00 2001 From: adelon <22380201+adelon@users.noreply.github.com> Date: Fri, 4 Jul 2025 17:15:24 +0200 Subject: Delete wunschzettel.tex --- library/wunschzettel.tex | 108 ----------------------------------------------- 1 file changed, 108 deletions(-) delete mode 100644 library/wunschzettel.tex (limited to 'library/wunschzettel.tex') diff --git a/library/wunschzettel.tex b/library/wunschzettel.tex deleted file mode 100644 index 74ea899..0000000 --- a/library/wunschzettel.tex +++ /dev/null @@ -1,108 +0,0 @@ -%This is just a .tex file with a wishlist of functionalitys - - -Tupel struct - -\newtheorem{struct2}[theoremcount]{Struct2} - -\begin{theorem} - %Some Theorem. -\end{theorem} -\begin{proof} - %Wish for nice Function definition. --------------------- - - %Some Proof where we need a Function. - %Privisuly defined. - $n \in \naturals$. - There is a Set $A = \{A_{0}, ..., A_{n}\}$. - For all $i$ we have $A_{i} \subseteq X$. - - Define function $f: X \to Y$, - \begin{align} - &x \mapsto \rfrac{y}{n} &; if \exists k \in \{1, ... n\}. x \in A_{k} \\ - &x \mapsto 0 &; if x \phi(x) \\ - %phi is some fol formula - - &x \mapsto \eta &; for \phi(x) and \psi(\eta) - - &x \mapsto \some_term(x)(u)(v)(w) &; \exist.u,v,w \psi(x)(u)(v)(w) \\ - % here i see the real need of varibles that can be useds in the define term - - &x \mapsto \some_else_term(x) &; else - % the else term would be great - - % the following axioms should be automaticly added. - % \dom{f} = X - % \ran{f} \subseteq Y - % f is function - - % therefor we should add the prompt for a proof that f is well defined - \end{align} - \begin{proof_well_defined} - % we need to proof that f allways maps X to Y - \end{proof_well_defined} - - % more proof but now i can use the function f - - % -------------------------------------------------------- - \begin{equation} - X= - \begin{cases} - 0, & \text{if}\ a=1 \\ - 1, & \text{otherwise} - \end{cases} - \end{equation} - - - - -\end{proof} - - -%------------------------------------------ -% My wish for a new struct -% I think this could be just get implemented along with the old struct - - -% If take we only take tupels, -% then just a list of defining fol formulas should be enougth. -\begin{struct2} - We say $(X,O)$ is a topological space if - \begin{enumerate} - \item $X$ is a set. % or X = \{...\mid .. \} or X = \naturals ... or ... - \item $O \subseteq \pow X$. - \item $\forall x,y \in O. x \union y \in O$ - \item %another formula - \item %.... - \end{enumerate} -\end{struct2} - - -% Then the proof of some thing is a structure is more easy. -% Since if we have just a tupel and some formulas which has to be fufilled, -% then we can make a proof as follows. - -\begin{struct2} - We say $(A,i,N)$ is a indexed set if - \begin{enumerate} - \item $f$ is a bijection from $N$ to $A$ - \item $N \subseteq \naturals$ - \end{enumerate} -\end{struct2} - - -\begin{theorem} - Let $A = \{ \{n\} \mid n \in \naturals \}$. - Let function $f: \naturals \to \pow{\naturals}$ such that, - \begin{algin} - \item x \mapsto \{x\} ; x \in \naturals - \end{algin} - Then $(A, f, \naturals)$ is a indexed set. -\end{theorem} -\begin{proof} - % Then we only need to proof that: - % \ran{f} = A - % \dom{f} = \naturals - % f is a bijection between $\naturals$ to $A$. -\end{proof} - -- cgit v1.2.3