From 3502f06c933df7e6177634a519d8c17c2a4d2d57 Mon Sep 17 00:00:00 2001 From: Simon-Kor <52245124+Simon-Kor@users.noreply.github.com> Date: Tue, 4 Jun 2024 15:49:18 +0200 Subject: Proof of teetwo_space_is_teeone_space --- library/topology/separation.tex | 14 +++++++++----- 1 file changed, 9 insertions(+), 5 deletions(-) (limited to 'library') diff --git a/library/topology/separation.tex b/library/topology/separation.tex index f055495..530a51f 100644 --- a/library/topology/separation.tex +++ b/library/topology/separation.tex @@ -99,10 +99,6 @@ For all $y \in \unions{V}$ we have $y \in \carrier[X] \setminus \{x\}$. Follows by set extensionality. \end{subproof} - - - - % Let $U_{y} \in \opens[X]$ such that $x \neq y \in X$. Error: unexpected '{' expecting digit %For all $y$ there exists $U$ such that $x \neq y$ and $y \in U$ and $U \in \opens[X]$. @@ -149,5 +145,13 @@ Then $X$ is a \teeone-space. \end{proposition} \begin{proof} - Omitted. % TODO + We show that for all $x,y\in\carrier[X]$ such that $x\neq y$ + there exist $U, V\in\opens[X]$ such that + $U\ni x\notin V$ and $V\ni y\notin U$. + \begin{subproof} + $X$ is hausdorff. + For all $x,y\in\carrier[X]$ such that $x\neq y$ + there exist $U, V\in\opens[X]$ such that + $x\in U$ and $y\in V$ and $U$ is disjoint from $V$. + \end{subproof} \end{proof} -- cgit v1.2.3