From 44d4c1c50ba6e0f12a2f4fdd204b315a15e434db Mon Sep 17 00:00:00 2001 From: Simon-Kor <52245124+Simon-Kor@users.noreply.github.com> Date: Tue, 25 Jun 2024 00:02:44 +0200 Subject: Improvement for the ATP proof time --- library/set.tex | 3 +++ library/topology/basis.tex | 2 +- 2 files changed, 4 insertions(+), 1 deletion(-) (limited to 'library') diff --git a/library/set.tex b/library/set.tex index 2fd18ea..69b9526 100644 --- a/library/set.tex +++ b/library/set.tex @@ -654,6 +654,9 @@ The $\operatorname{\textsf{cons}}$ operation is determined by the following axio Suppose $(A\inter B)\union C = A\inter (B\union C)$. Then $C\subseteq A$. \end{proposition} +\begin{proof} + Follows by \cref{union_upper_right,union_upper_left,subseteq_union_iff,subseteq_antisymmetric,subseteq_inter_iff}. +\end{proof} % From Isabelle/ZF equalities theory \begin{proposition}\label{union_inter_crazy} diff --git a/library/topology/basis.tex b/library/topology/basis.tex index bd7d15a..052c551 100644 --- a/library/topology/basis.tex +++ b/library/topology/basis.tex @@ -64,7 +64,7 @@ Then $\unions{F}\in\genOpens{B}{X}$. \end{lemma} \begin{proof} - We have $\unions{F} \in \pow{X}$. + We have $\unions{F} \in \pow{X}$ by \cref{genopens,subseteq,pow_iff,unions_family,powerset_elim}. Show for all $x\in \unions{F}$ there exists $W \in B$ such that $x\in W$ and $W \subseteq \unions{F}$. -- cgit v1.2.3