From 698bc0ec8128889aae37a766130e9b193c399b9c Mon Sep 17 00:00:00 2001 From: Simon-Kor <52245124+Simon-Kor@users.noreply.github.com> Date: Sat, 6 Jul 2024 17:55:36 +0200 Subject: Finished the formalization of naturals. --- library/numbers.tex | 119 ++++++++++++++++++++++++++++++++++++---------------- 1 file changed, 84 insertions(+), 35 deletions(-) (limited to 'library') diff --git a/library/numbers.tex b/library/numbers.tex index 113aadb..a185940 100644 --- a/library/numbers.tex +++ b/library/numbers.tex @@ -113,6 +113,14 @@ If $x$ is a natural number and $y$ is a natural number then $x+y$ is a natural number. \end{axiom} +\begin{axiom}\label{naturals_rmul_is_closed_in_n} + For all $n,m \in \naturals$ we have $(n \rmul m) \in \naturals$. +\end{axiom} + +\begin{axiom}\label{naturals_add_is_closed_in_n} + For all $n,m \in \naturals$ we have $(n + m) \in \naturals$. +\end{axiom} + \subsubsection{Natural numbers as ordinals} @@ -226,23 +234,22 @@ \begin{proof} Let $P = \{ k \in \naturals \mid \text{for all $n',m' \in \naturals$ we have $n' + (m' + k) = (n' + m') + k$}\}$. $P \subseteq \naturals$. - We show that $P = \naturals$. - \begin{subproof} - $\zero \in P$. - It suffices to show that for all $k \in P$ we have $\suc{k} \in P$. - Fix $k \in P$. - \begin{align*} - (n + m) + \suc{k} \\ - &= \suc{(n+m) + k} \\ - &= \suc{n + (m + k)} \\ - &= n + \suc{(m + k)} \\ - &= n + (m + \suc{k}) - \end{align*} - For all $n,m \in \naturals$ we have $(n + m) + \suc{k} = n + (m + \suc{k})$. - \end{subproof} + $\zero \in P$. + It suffices to show that for all $k \in P$ we have $\suc{k} \in P$. + Fix $k \in P$. + It suffices to show that for all $n' \in \naturals$ we have for all $m' \in \naturals$ we have $n' + (m' + \suc{k}) = (n' + m') + \suc{k}$. + Fix $n' \in \naturals$. + Fix $m' \in \naturals$. + \begin{align*} + (n' + m') + \suc{k} \\ + &= \suc{(n' + m') + k} \\ + &= \suc{n' + (m' + k)} \\ + &= n' + \suc{(m' + k)} \\ + &= n' + (m' + \suc{k}) + \end{align*} \end{proof} -\begin{proposition}\label{naturals_rmul_one} +\begin{proposition}\label{naturals_rmul_one_left} For all $n \in \naturals$ we have $1 \rmul n = n$. \end{proposition} \begin{proof} @@ -258,7 +265,12 @@ \begin{proposition}\label{naturals_add_remove_brakets} Suppose $n,m,k \in \naturals$. - Then $(n + m) + k = n + m + k$. + Then $(n + m) + k = n + m + k = n + (m + k)$. +\end{proposition} + +\begin{proposition}\label{naturals_add_remove_brakets2} + Suppose $n,m,k,l \in \naturals$. + Then $(n + m) + (k + l)= n + m + k + l = n + (m + k) + l = (((n + m) + k) + l)$. \end{proposition} \begin{proposition}\label{natural_disstro} @@ -271,26 +283,43 @@ $P \subseteq \naturals$. It suffices to show that for all $n \in P$ we have $\suc{n} \in P$. Fix $n \in P$. - It suffices to show that for all $m \in \naturals$ we have $\suc{n} \rmul (m + k) = (\suc{n} \rmul m) + (\suc{n} \rmul k)$. - Fix $m \in \naturals$. - It suffices to show that for all $k \in \naturals$ we have $\suc{n} \rmul (m + k) = (\suc{n} \rmul m) + (\suc{n} \rmul k)$. - Fix $k \in \naturals$. + + It suffices to show that for all $m'$ such that $m' \in \naturals$ we have for all $k' \in \naturals$ we have $\suc{n} \rmul (m' + k') = (\suc{n} \rmul m') + (\suc{n} \rmul k')$. + Fix $m' \in \naturals$. + Fix $k' \in \naturals$. + $n \in \naturals$. \begin{align*} - \suc{n} \rmul (m + k) \\ - &= (n \rmul (m + k)) + (m + k) \\% \explanation{by \cref{naturals_mul_axiom_2}}\\ - &= ((n \rmul m) + (n \rmul k)) + (m + k) \explanation{by assumption}\\ - &= ((n \rmul m) + (n \rmul k)) + m + k \explanation{by \cref{naturals_add_remove_brakets,naturals_add_kommu}}\\ - &= (((n \rmul m) + (n \rmul k)) + m) + k \explanation{by \cref{naturals_add_kommu,naturals_add_remove_brakets,naturals_add_assoc}}\\ - &= (m + ((n \rmul m) + (n \rmul k))) + k \explanation{by \cref{naturals_add_kommu}}\\ - &= ((m + (n \rmul m)) + (n \rmul k)) + k \explanation{by \cref{naturals_add_assoc}}\\ - &= (((n \rmul m) + m) + (n \rmul k)) + k \explanation{by \cref{naturals_add_kommu}}\\ - &= ((n \rmul m) + m) + ((n \rmul k) + k) \explanation{by \cref{naturals_add_assoc}}\\ - &= (\suc{n} \rmul m) + (\suc{n} \rmul k) \explanation{by \cref{naturals_mul_axiom_2}} + \suc{n} \rmul (m' + k') \\ + &= (n \rmul (m' + k')) + (m' + k') \\% \explanation{by \cref{naturals_mul_axiom_2}}\\ + &= ((n \rmul m') + (n \rmul k')) + (m' + k') \\%\explanation{by assumption}\\ + &= ((n \rmul m') + (n \rmul k')) + m' + k' \\%\explanation{by \cref{naturals_add_remove_brakets,naturals_add_kommu}}\\ + &= (((n \rmul m') + (n \rmul k')) + m') + k' \\%\explanation{by \cref{naturals_add_kommu,naturals_add_remove_brakets,naturals_add_assoc}}\\ + &= (m' + ((n \rmul m') + (n \rmul k'))) + k' \\%\explanation{by \cref{naturals_add_kommu}}\\ + &= ((m' + (n \rmul m')) + (n \rmul k')) + k' \\%\explanation{by \cref{naturals_add_assoc}}\\ + &= (((n \rmul m') + m') + (n \rmul k')) + k' \\%\explanation{by \cref{naturals_add_kommu}}\\ + &= ((n \rmul m') + m') + ((n \rmul k') + k') \\%\explanation{by \cref{naturals_add_assoc}}\\ + &= (\suc{n} \rmul m') + (\suc{n} \rmul k') %\explanation{by \cref{naturals_mul_axiom_2}} \end{align*} \end{proof} +\begin{proposition}\label{naturals_rmul_one_kommu} + For all $n \in \naturals$ we have $n \rmul 1 = n$. +\end{proposition} +\begin{proof} + Let $P = \{ n \in \naturals \mid n \rmul 1 = n\}$. + $1 \in P$. + It suffices to show that for all $n' \in P$ we have $\suc{n'} \in P$. + Fix $n' \in P$. + It suffices to show that $\suc{n'} \rmul 1 = \suc{n'}$. + \begin{align*} + \suc{n'} \rmul 1 \\ + &= n' \rmul 1 + 1 \\ + &= n' + 1 \\ + &= \suc{n'} + \end{align*} +\end{proof} -\begin{proposition}\label{naturals_mul_kommu} +\begin{proposition}\label{naturals_rmul_kommu} Let $n, m \in \naturals$. Then $n \rmul m = m \rmul n$. \end{proposition} @@ -303,12 +332,13 @@ It suffices to show that for all $m \in \naturals$ we have $\suc{n} \rmul m = m \rmul \suc{n}$. Fix $m \in \naturals$. $n \rmul m = m \rmul n$. - \begin{align*} \suc{n} \rmul m \\ &= (n \rmul m) + m \\ &= (m \rmul n) + m \\ &= m + (m \rmul n) \\ + &= (m \rmul 1) + (m \rmul n) \\ + &= m \rmul (1 + n) \\ &= m \rmul \suc{n} \\ \end{align*} \end{proof} @@ -317,13 +347,32 @@ Suppose $n,m,k \in \naturals$. Then $n \rmul (m \rmul k) = (n \rmul m) \rmul k$. \end{proposition} +\begin{proof} + Let $P = \{ n \in \naturals \mid \text{for all $m,k \in \naturals$ we have $n \rmul (m \rmul k) = (n \rmul m) \rmul k$ }\}$. + $\zero \in P$. + It suffices to show that for all $n' \in P$ we have $ \suc{n'} \in P$. + Fix $n' \in P$. + It suffices to show that for all $m' \in \naturals$ we have for all $k' \in \naturals$ we have $\suc{n'} \rmul (m' \rmul k') = (\suc{n'} \rmul m') \rmul k'$. + Fix $m' \in \naturals$. + Fix $k' \in \naturals$. + \begin{align*} + \suc{n'} \rmul (m' \rmul k') \\ + &=(n' \rmul (m' \rmul k')) + (m' \rmul k') \\ + &=((n' \rmul m') \rmul k') + (m' \rmul k') \\ + &=(k' \rmul (n' \rmul m')) + (k' \rmul m') \\ + &=k' \rmul ((n' \rmul m') + m') \\ + &=k' \rmul (\suc{n'} \rmul m') \\ + &=(\suc{n'} \rmul m') \rmul k' + \end{align*} +\end{proof} \begin{lemma}\label{naturals_is_equal_to_two_times_naturals} $\{x+y \mid x \in \naturals, y \in \naturals \} = \naturals$. \end{lemma} -\begin{proof} - Omitted. -\end{proof} + + + + -- cgit v1.2.3