From 8a19eec1e581efa473af0173ba79b553e4191ffa Mon Sep 17 00:00:00 2001 From: Simon-Kor <52245124+Simon-Kor@users.noreply.github.com> Date: Mon, 12 Aug 2024 15:55:17 +0200 Subject: way way way more urysohn --- library/topology/urysohn.tex | 58 +++++++++++++++++--------------------------- 1 file changed, 22 insertions(+), 36 deletions(-) (limited to 'library') diff --git a/library/topology/urysohn.tex b/library/topology/urysohn.tex index 414043f..3be3c30 100644 --- a/library/topology/urysohn.tex +++ b/library/topology/urysohn.tex @@ -461,8 +461,7 @@ The first tept will be a formalisation of chain constructions. Omitted. \end{subproof} - %%------------- Maybe use Abstrect.hs line 368 "Local Function". - + We show that for all $m \in \indexset[\zeta]$ we have there exist $f$ such that $f \in \funs{\carrier[X]}{\intervalclosed{\zero}{1}}$ and for all $n \in \indexset[\index[\zeta](m)]$ we have for all $x \in \index[\index[\zeta](m)](n)$ we have $f(x) = \rfrac{n}{\pot(m)}$. @@ -513,13 +512,7 @@ The first tept will be a formalisation of chain constructions. Let $\gamma(n) = \apply{\gamma}{n}$ for $n \in \naturals$. - %We show that there exist $\kappa$ such that $\kappa$ is the limit sequence of $\gamma$. - %\begin{subproof} - % Omitted. - %\end{subproof} - - %Let $\gamma(n)(x) = \apply{\gamma(n)}{x}$ for $x\in \carrier[X]$ - + We show that for all $n \in \naturals$ we have $\gamma(n)$ is a function from $\carrier[X]$ to $\reals$. \begin{subproof} @@ -552,49 +545,42 @@ The first tept will be a formalisation of chain constructions. Follows by \cref{two_in_naturals,function_apply_default,reals_axiom_zero_in_reals,dom_emptyset,notin_emptyset,funs_type_apply,neg,minus,abs_behavior1}. \end{subproof} \end{subproof} - - - %Let $S(x) = \{(n,x) \mid n \in naturals \mid x = (\gamma(n))(x)\}$. - - %Let $S(x) - - %We show that there exist $F$ such that - %for all $x \in \carrier[X]$ we have $F(x)$ is - - - %We show that there exist $F$ such that - %$F \in \funs{\carrier[X]}{\intervalclosed{\zero}{1}}$ and - %for all $x \in \carrier[X]$ we have - %there exist $k \in \intervalclosed{\zero}{1}$ - %such that $F(x) = k$ and - %for all $\epsilon \in \reals$ such that $\epsilon > \zero$ - %we have there exist $N \in \naturals$ such that - %for all $N' \in \naturals$ such that $N' > N$ - %we have $\abs{(k - \apply{\gamma(N')}{x})} \leq \epsilon$. - %\begin{subproof} - % Omitted. - %\end{subproof} Let $G(x) = g(x)$ for $x \in \carrier[X]$. We have $\dom{G} = \carrier[X]$. - %For all $x \in \carrier[X]$ for all $n \in \naturals$ we have $g(x) \leq \apply{\gamma(n)}{x}$. - We show that for all $x \in \dom{G}$ we have $G(x) \in \reals$. \begin{subproof} Fix $x \in \dom{G}$. It suffices to show that $g(x) \in \reals$. - %There exist $k \in \reals$ such that for all $\epsilon \in \reals$ such that $\epsilon > \zero$ we have there exist $N \in \naturals$ such that for all $N' \in \naturals$ such that $N' > N$ we have $\abs{\apply{\gamma(n)}{x} - k} < \epsilon$ and $g(x)= k$. - + There exist $k \in \reals$ such that for all $\epsilon \in \reals$ such that $\epsilon > \zero$ we have there exist $N \in \naturals$ such that for all $N' \in \naturals$ such that $N' > N$ we have $\abs{\apply{\gamma(n)}{x} - k} < \epsilon$. + $g(x)= k$. + + Follows by \cref{apply,plus_one_order,ordinal_iff_suc_ordinal,natural_number_is_ordinal,subseteq,naturals_subseteq_reals,naturals_is_equal_to_two_times_naturals,reals_one_bigger_zero,one_in_reals,ordinal_prec_trichotomy,omega_is_an_ordinal,suc_intro_self,two_in_naturals,in_asymmetric,suc}. \end{subproof} We show that for all $x \in \dom{G}$ we have $\zero \leq G(x) \leq 1$. \begin{subproof} - Omitted. + Fix $x \in \dom{G}$. + Then $x \in \carrier[X]$. + \begin{byCase} + \caseOf{$x \in A$.} + For all $n \in \naturals$ we have $\apply{\gamma(n)}{x} = 0$. + + + \caseOf{$x \notin A$.} + \begin{byCase} + \caseOf{$x \in B$.} + OFor all $n \in \naturals$ we have $\apply{\gamma(n)}{x} = 1$. + + \caseOf{$x \notin B$.} + Omitted. + \end{byCase} + \end{byCase} \end{subproof} -- cgit v1.2.3