From 266529fa1271a942920845072efb588c64c4aba3 Mon Sep 17 00:00:00 2001 From: Simon-Kor <52245124+Simon-Kor@users.noreply.github.com> Date: Tue, 28 May 2024 17:31:18 +0200 Subject: unexpected behavior of vampire The task topological behavior is proofed in seconds by just vampire, but with mode casc it takes plenty seconds --- library/topology/basis.tex | 20 +++++++++++--------- 1 file changed, 11 insertions(+), 9 deletions(-) (limited to 'library') diff --git a/library/topology/basis.tex b/library/topology/basis.tex index 61a358f..6fc07d3 100644 --- a/library/topology/basis.tex +++ b/library/topology/basis.tex @@ -79,36 +79,38 @@ \begin{lemma}\label{inters_in_genopens} Assume $B$ is a topological basis for $X$. - %For all $A, C$ - If $A\in \genOpens{B}{X}$ and $C\in \genOpens{B}{X}$ then $(A\inter C) \in \genOpens{B}{X}$. + Suppose $A, C\in \genOpens{B}{X}$. + + Then $(A\inter C) \in \genOpens{B}{X}$. \end{lemma} \begin{proof} Show $(A \inter C) \in \pow{X}$. \begin{subproof} - $(A \inter C) \subseteq X$ by assumption. + Omitted. \end{subproof} - Therefore for all $A, C \in \genOpens{B}{X}$ we have $(A \inter C) \in \pow{X}$. Show for all $x\in (A\inter C)$ there exists $W \in B$ such that $x\in W$ and $W \subseteq (A\inter C)$. \begin{subproof} Fix $x \in (A\inter C)$. - There exist $V' \in B$ such that $x \in V'$ and $V' \subseteq A$ by assumption. %TODO: Warum muss hier by assumtion hin? - There exist $V'' \in B$ such that $x \in V''$ and $V'' \subseteq C$ by assumption. - There exist $W \in B$ such that $x \in W$ and $W \subseteq v'$ and $W \subseteq V''$ by assumption. + $x \in A,C$. + There exist $V' \in B$ such that $x \in V'$ and $V' \subseteq A$ by \cref{genopens}. + There exist $V'' \in B$ such that $x \in V''$ and $V'' \subseteq C$ by \cref{genopens}. + $x \in (V' \inter V'')$. + There exist $W \in B$ such that $x \in W$ and $W \subseteq V'$ and $W \subseteq V''$. Show $W \subseteq (A\inter C)$. \begin{subproof} %$W \subseteq v'$ and $W \subseteq V''$. - For all $y \in W$ we have $y \in V'$ and $y \in V''$ by assumption. + For all $y \in W$ we have $y \in V'$ and $y \in V''$. \end{subproof} \end{subproof} %Therefore for all $A, C, x$ such that $A \in \genOpens{B}{X}$ and $C \in \genOpens{B}{X}$ and $x \in (A \inter C)$ we have there exists $W \in B$ %such that $x\in W$ and $W \subseteq (A\inter C)$. - $(A\inter C) \in \genOpens{B}{X}$ by assumption. + $(A\inter C) \in \genOpens{B}{X}$. \end{proof} -- cgit v1.2.3