From acbde8031d18ff5ccbdb2842f57cbe1c628de0d0 Mon Sep 17 00:00:00 2001 From: Simon-Kor <52245124+Simon-Kor@users.noreply.github.com> Date: Tue, 25 Jun 2024 00:01:31 +0200 Subject: Sorted the structure of numbers.tex --- library/numbers.tex | 231 ++++++++++++++++++++++++++++++++++++++-------------- 1 file changed, 168 insertions(+), 63 deletions(-) (limited to 'library') diff --git a/library/numbers.tex b/library/numbers.tex index 2451730..1837ae8 100644 --- a/library/numbers.tex +++ b/library/numbers.tex @@ -1,49 +1,52 @@ -\import{nat.tex} \import{order/order.tex} \import{relation.tex} \section{The real numbers} -%TODO: -%\inv{} für inverse benutzen. Per Signatur einfüheren und dann axiomatisch absicher -%\cdot für multiklikation verwenden. -%< für die relation benutzen. -% sup und inf einfügen - \begin{signature} $\reals$ is a set. \end{signature} \begin{signature} - $x \add y$ is a set. + $x + y$ is a set. \end{signature} \begin{signature} $x \rmul y$ is a set. \end{signature} +\subsection{Basic axioms of the reals} + +\begin{axiom}\label{reals_axiom_zero_in_reals} + $\zero \in \reals$. +\end{axiom} + \begin{axiom}\label{one_in_reals} $1 \in \reals$. \end{axiom} -\begin{axiom}\label{reals_axiom_order} - $\lt[\reals]$ is an order on $\reals$. +\begin{axiom}\label{zero_neq_one} + $\zero \neq 1$. \end{axiom} -\begin{axiom}\label{reals_axiom_strictorder} - $\lt[\reals]$ is a strict order. -\end{axiom} +\begin{definition}\label{reals_definition_order_def} + $x < y$ iff there exist $z \in \reals$ such that $x + (z \rmul z) = y$. +\end{definition} + +%\begin{axiom}\label{reals_axiom_order} +% $\lt[\reals]$ is an order on $\reals$. +%\end{axiom} + +%\begin{abbreviation}\label{lesseq_on_reals} +% $x \leq y$ iff $(x,y) \in \lt[\reals]$. +%\end{abbreviation} \begin{abbreviation}\label{less_on_reals} - $x < y$ iff $(x,y) \in \lt[\reals]$. + $x \leq y$ iff it is wrong that $y < x$. \end{abbreviation} \begin{abbreviation}\label{greater_on_reals} - $x > y$ iff $y < x$. -\end{abbreviation} - -\begin{abbreviation}\label{lesseq_on_reals} - $x \leq y$ iff it is wrong that $x > y$. + $x > y$ iff $y \leq x$. \end{abbreviation} \begin{abbreviation}\label{greatereq_on_reals} @@ -55,100 +58,165 @@ there exist $z \in \reals$ such that $x < z$ and $z < y$. \end{axiom} -\begin{axiom}\label{reals_axiom_order_def} - $x < y$ iff there exist $z \in \reals$ such that $\zero < z$ and $x \add z = y$. -\end{axiom} - -\begin{lemma}\label{reals_one_bigger_than_zero} - $\zero < 1$. -\end{lemma} - - \begin{axiom}\label{reals_axiom_assoc} - For all $x,y,z \in \reals$ $(x \add y) \add z = x \add (y \add z)$ and $(x \rmul y) \rmul z = x \rmul (y \rmul z)$. + For all $x,y,z \in \reals$ $(x + y) + z = x + (y + z)$ and $(x \rmul y) \rmul z = x \rmul (y \rmul z)$. \end{axiom} \begin{axiom}\label{reals_axiom_kommu} - For all $x,y \in \reals$ $x \add y = y \add x$ and $x \rmul y = y \rmul x$. -\end{axiom} - -\begin{axiom}\label{reals_axiom_zero_in_reals} - $\zero \in \reals$. + For all $x,y \in \reals$ $x + y = y + x$ and $x \rmul y = y \rmul x$. \end{axiom} \begin{axiom}\label{reals_axiom_zero} - For all $x \in \reals$ $x \add \zero = x$. + For all $x \in \reals$ $x + \zero = x$. \end{axiom} \begin{axiom}\label{reals_axiom_one} - For all $x \in \reals$ $1 \neq \zero$ and $x \rmul 1 = x$. + For all $x \in \reals$ we have $x \rmul 1 = x$. \end{axiom} \begin{axiom}\label{reals_axiom_add_invers} - For all $x \in \reals$ there exist $y \in \reals$ such that $x \add y = \zero$. + For all $x \in \reals$ there exist $y \in \reals$ such that $x + y = \zero$. \end{axiom} - \begin{axiom}\label{reals_axiom_mul_invers} For all $x \in \reals$ such that $x \neq \zero$ there exist $y \in \reals$ such that $x \rmul y = 1$. \end{axiom} \begin{axiom}\label{reals_axiom_disstro1} - For all $x,y,z \in \reals$ $x \rmul (y \add z) = (x \rmul y) \add (x \rmul z)$. + For all $x,y,z \in \reals$ $x \rmul (y + z) = (x \rmul y) + (x \rmul z)$. +\end{axiom} + +\begin{axiom}\label{reals_axiom_dedekind_complete} + For all $X,Y,x,y$ such that $X,Y \subseteq \reals$ and $x \in X$ and $y \in Y$ and $x < y$ we have there exist $z \in \reals$ + such that $x < z < y$. \end{axiom} \begin{proposition}\label{reals_disstro2} - For all $x,y,z \in \reals$ $(y \add z) \rmul x = (y \rmul x) \add (z \rmul x)$. + For all $x,y,z \in \reals$ $(y + z) \rmul x = (y \rmul x) + (z \rmul x)$. \end{proposition} +\begin{proof} + Omitted. +\end{proof} \begin{proposition}\label{reals_reducion_on_addition} - For all $x,y,z \in \reals$ if $x \add y = x \add z$ then $y = z$. + For all $x,y,z \in \reals$ if $x + y = x + z$ then $y = z$. \end{proposition} -\begin{axiom}\label{reals_axiom_dedekind_complete} - For all $X,Y,x,y$ such that $X,Y \subseteq \reals$ and $x \in X$ and $y \in Y$ and $x < y$ we have there exist $z \in \reals$ - such that $x < z < y$. -\end{axiom} + + +%\begin{signature}\label{invers_is_set} +% $\addInv{y}$ is a set. +%\end{signature} + +%\begin{definition}\label{add_inverse} +% $\addInv{y} = \{ x \mid \exists k \in \reals. k + y = \zero \land x \in k\}$. +%\end{definition} + + +%\begin{definition}\label{add_inverse_natural_language} +% $x$ is additiv inverse of $y$ iff $x = \addInv{y}$. +%\end{definition} + +%\begin{lemma}\label{rminus} +% $x \rminus \addInv{x} = \zero$. +%\end{lemma} + +\begin{abbreviation}\label{is_positiv} + $x$ is positiv iff $x > \zero$. +\end{abbreviation} + +\begin{lemma}\label{reals_add_of_positiv} + Let $x,y \in \reals$. + Suppose $x$ is positiv and $y$ is positiv. + Then $x + y$ is positiv. +\end{lemma} +\begin{proof} + Omitted. +\end{proof} + +\begin{lemma}\label{reals_mul_of_positiv} + Let $x,y \in \reals$. + Suppose $x$ is positiv and $y$ is positiv. + Then $x \rmul y$ is positiv. +\end{lemma} +\begin{proof} + Omitted. +\end{proof} + + + +\begin{lemma}\label{order_reals_lemma0} + For all $x \in \reals$ we have not $x < x$. +\end{lemma} +\begin{proof} + Omitted. +\end{proof} \begin{lemma}\label{order_reals_lemma1} - For all $x,y,z \in \reals$ such that $\zero < x$ - if $y < z$ - then $(y \rmul x) < (z \rmul x)$. + Let $x,y,z \in \reals$. + Suppose $\zero < x$. + Suppose $y < z$. + Then $(y \rmul x) < (z \rmul x)$. \end{lemma} +\begin{proof} + Omitted. + %There exist $k \in \reals$ such that $y + k = z$ and $k > \zero$ by \cref{reals_definition_order_def}. + %\begin{align*} + % (z \rmul x) \\ + % &= ((y + k) \rmul x) \\ + % &= ((y \rmul x) + (k \rmul x)) \explanation{by \cref{reals_disstro2}} + %\end{align*} + %Then $(k \rmul x) > \zero$. + %Therefore $(z \rmul x) > (y \rmul x)$. +\end{proof} \begin{lemma}\label{order_reals_lemma2} - For all $x,y,z \in \reals$ such that $\zero < x$ - if $y < z$ - then $(x \rmul y) < (x \rmul z)$. + Let $x,y,z \in \reals$. + Suppose $\zero < x$. + Suppose $y < z$. + Then $(x \rmul y) < (x \rmul z)$. \end{lemma} +\begin{proof} + Omitted. +\end{proof} \begin{lemma}\label{order_reals_lemma3} - For all $x,y,z \in \reals$ such that $x < \zero$ - if $y < z$ - then $(x \rmul z) < (x \rmul y)$. + Let $x,y,z \in \reals$. + Suppose $\zero < x$. + Suppose $y < z$. + Then $(x \rmul z) < (x \rmul y)$. \end{lemma} +\begin{proof} + Omitted. +\end{proof} -\begin{lemma}\label{o4rder_reals_lemma} - For all $x,y \in \reals$ if $x > y$ then $x \geq y$. +\begin{lemma}\label{order_reals_lemma00} + For all $x,y \in \reals$ such that $x > y$ we have $x \geq y$. \end{lemma} + \begin{lemma}\label{order_reals_lemma5} - For all $x,y \in \reals$ if $x < y$ then $x \leq y$. + For all $x,y \in \reals$ such that $x < y$ we have $x \leq y$. \end{lemma} +\begin{proof} + Omitted. +\end{proof} \begin{lemma}\label{order_reals_lemma6} - For all $x,y \in \reals$ if $x \leq y \leq x$ then $x=y$. + For all $x,y \in \reals$ such that $x \leq y \leq x$ we have $x=y$. \end{lemma} - -\begin{axiom}\label{reals_axiom_minus} - For all $x \in \reals$ $x \rmiuns x = \zero$. -\end{axiom} +\begin{proof} + Omitted. +\end{proof} \begin{lemma}\label{reals_minus} - Assume $x,y \in \reals$. If $x \rmiuns y = \zero$ then $x=y$. + Assume $x,y \in \reals$. If $x \rminus y = \zero$ then $x=y$. \end{lemma} +\begin{proof} + Omitted. +\end{proof} \begin{definition}\label{upper_bound} $x$ is an upper bound of $X$ iff for all $y \in X$ we have $x > y$. @@ -162,6 +230,9 @@ %Let $x,y \in \reals$ and let $X$ be a subset of $\reals$. If $x$ is a least upper bound of $X$ and $y$ is a least upper bound of $X$ then $x = y$. \end{lemma} +\begin{proof} + Omitted. +\end{proof} \begin{definition}\label{supremum_reals} $x$ is the supremum of $X$ iff $x$ is a least upper bound of $X$. @@ -181,8 +252,42 @@ \begin{lemma}\label{infimum_unique} If $x$ is a greatest lower bound of $X$ and $y$ is a greatest lower bound of $X$ then $x = y$. \end{lemma} +\begin{proof} + Omitted. +\end{proof} \begin{definition}\label{infimum_reals} $x$ is the supremum of $X$ iff $x$ is a greatest lower bound of $X$. \end{definition} + + + +\section{The natural numbers} + + +\begin{abbreviation}\label{def_suc} + $\successor{n} = n + 1$. +\end{abbreviation} + +\begin{inductive}\label{naturals_definition_as_subset_of_reals} + Define $\nat \subseteq \reals$ inductively as follows. + \begin{enumerate} + \item $\zero \in \nat$. + \item If $n\in \nat$, then $\successor{n} \in \nat$. + \end{enumerate} +\end{inductive} + +\begin{lemma}\label{reals_order_suc} + $n < \successor{n}$. +\end{lemma} + +%\begin{proposition}\label{safe} +% Contradiction. +%\end{proposition} + +\section{The integers} + +%\begin{definition} +% $\integers = \{z \in \reals \mid z = \zero or \} $. +%\end{definition} \ No newline at end of file -- cgit v1.2.3