From 442d732696ad431b84f6e5c72b6ee785be4fd968 Mon Sep 17 00:00:00 2001 From: adelon <22380201+adelon@users.noreply.github.com> Date: Sat, 10 Feb 2024 02:22:14 +0100 Subject: Initial commit --- test/examples/geometry.tex | 132 +++++++++++++++++++++++++++++++++++++++++++++ 1 file changed, 132 insertions(+) create mode 100644 test/examples/geometry.tex (limited to 'test/examples/geometry.tex') diff --git a/test/examples/geometry.tex b/test/examples/geometry.tex new file mode 100644 index 0000000..fd8df42 --- /dev/null +++ b/test/examples/geometry.tex @@ -0,0 +1,132 @@ +\begin{definition}\label{collinear} + $a$ is collinear with $b$ and $c$ iff $\Betw{a}{b}{c}$ or $\Betw{b}{c}{a}$ or $\Betw{c}{a}{b}$. +\end{definition} + +\begin{axiom}[Reflexivity of congruence]\label{cong_refl_swap} % SST A1 + Let $a, b$ be points. + Then $\Cong{a}{b}{b}{a}$. +\end{axiom} + +\begin{axiom}[Pseudotransitivity of congruence]\label{cong_pseudotransitive} % SST A2 + Let $a, b, c, d$ be points. + If $\Cong{c}{d}{a}{b}$ and $\Cong{c}{d}{e}{f}$ then $\Cong{a}{b}{e}{f}$. +\end{axiom} + +\begin{axiom}[Identity of congruence]\label{cong_id} % SST A3 + Let $a, b, c$ be points. + If $\Cong{a}{b}{c}{c}$ then $a = b$. +\end{axiom} + + +\begin{axiom}[Segment construction]\label{segment_construction} % SST A4 + There exists a point $c$ such that $\Betw{a}{b}{c}$ and $\Cong{b}{c}{d}{e}$. +\end{axiom} + + +\begin{definition}\label{ofs} + Let $x,y,z,r,u,v,w,p$ be points. + $\OFS{x}{y}{z}{r}{u}{v}{w}{p}$ if and only if + $\Betw{x}{y}{z} + \land \Betw{u}{v}{w}$ + and + $\Cong{x}{y}{u}{v} + \land \Cong{y}{z}{v}{w} + \land \Cong{x}{r}{u}{p} + \land \Cong{y}{r}{v}{p}$. +\end{definition} + + +\begin{axiom}[Five segment axiom]\label{five_segment} % SST A5 + Let $a,b,c,d,a',b',c',d'$ be points. + If $\OFS{a}{b}{c}{d}{a'}{b'}{c'}{d'}$ and + $a \neq b$ then $\Cong{c}{d}{c'}{d'}$. +\end{axiom} + + +\begin{axiom}[Identity of betweenness]\label{betw_id} + Let $a,b$ be points. + If $\Betw{a}{b}{a}$ then $a = b$. +\end{axiom} + + +\begin{axiom}[Inner Pasch]\label{innerpasch} % SST A7 + Let $x,y,z,u,v,w$ be points. + If $\Betw{x}{u}{z}$ and $\Betw{y}{v}{z}$ then there exists a point $w$ + such that $\Betw{u}{w}{y}$ and $\Betw{v}{w}{x}$. +\end{axiom} + + +% \begin{axiom}[Lower dimension] % SST A8 +% %There exist points $a, b, c$ such that +% There exists $a, b, c$ such that $a,b,c$ are points and +% $a$ is not collinear with $b$ and $c$. +% \end{axiom} + + +\begin{axiom}[Upper dimension]\label{upperdim} % SST A9 + Let $x,y,z,u,v$ be points. + If $\Cong{x}{u}{x}{v}$ and $\Cong{y}{u}{y}{v}$ + and $\Cong{z}{u}{z}{v}$ and $u \neq v$ + then $x$ is collinear with $y$ and $z$. +\end{axiom} + + +% \begin{axiom}[Euclid] +% Assume $x \neq r$. +% If $\Betw{x}{r}{v}$ and $\Betw{y}{r}{z}$ +% then there exist points $s,t$ such that +% $\Betw{x}{y}{s}$ and $\Betw{x}{z}{t}$ and $\Betw{s}{v}{t}$. +% \end{axiom} + + +\begin{lemma}[Reflexivity of congruence]\label{cong_refl} % Satz 2.1 + Let $a, b$ be points. + Then $\Cong{a}{b}{a}{b}$. +\end{lemma} + + +\begin{lemma}[Symmetry of congruence]\label{cong_sym} % Satz 2.2 + Let $a, b, c, d$ be points. + Suppose $\Cong{a}{b}{c}{d}$. + Then $\Cong{c}{d}{a}{b}$. +\end{lemma} + + +\begin{lemma}[Transitivity of congruence]\label{cong_transitive} % Satz 2.3 + Let $a, b, c, d, e, f$ be points. + If $\Cong{a}{b}{c}{d}$ and $\Cong{c}{d}{e}{f}$ + then $\Cong{a}{b}{e}{f}$. +\end{lemma} + + +\begin{lemma}\label{cong_shuffle_left} % Satz 2.4 + Let $a, b, c, d$ be points. + If $\Cong{a}{b}{c}{d}$ + then $\Cong{b}{a}{c}{d}$. +\end{lemma} + + +\begin{lemma}\label{cong_shuffle_right} % Satz 2.5 + Let $a, b, c, d$ be points. + If $\Cong{a}{b}{c}{d}$ + then $\Cong{b}{a}{d}{c}$. +\end{lemma} + + +\begin{lemma}[Zero segments are congruent]\label{cong_zero} % Satz 2.8 + Let $a,b$ be points. + Then $\Cong{a}{a}{b}{b}$. +\end{lemma} + +% Somewhat slow for now. +%\begin{lemma}[Concatenation of segments]\label{segment_concat} % Satz 2.11 +% Assume $\Betw{x}{y}{z}$ and $\Betw{r}{v}{w}$. +% Assume $\Cong{x}{y}{r}{v}$ and $\Cong{y}{z}{v}{w}$. +% Then $\Cong{x}{z}{r}{w}$. +%\end{lemma} +%\begin{proof} +% % We have +% $\OFS{x}{y}{z}{x}{r}{v}{w}{r}$. % By previous results and assumption. +% If $x = y$ then $r = v$. % Axiom A3 gives this implication. +% If $x \neq y$ then $\Cong{x}{z}{r}{w}$. % Axiom A5 completes the proof. +%\end{proof} -- cgit v1.2.3