\import{algebra/monoid.tex} \section{Group} \begin{struct}\label{group} A group $G$ is a monoid such that \begin{enumerate} \item\label{group_inverse} for all $g \in \carrier[G]$ there exist $h \in \carrier[G]$ such that $\mul[G](g, h) =\neutral[G]$. \end{enumerate} \end{struct} \begin{corollary}\label{group_implies_monoid} Let $G$ be a group. Then $G$ is a monoid. \end{corollary} \begin{abbreviation}\label{cfourdot} $g \cdot h = \mul(g,h)$. \end{abbreviation} \begin{lemma}\label{neutral_is_idempotent} Let $G$ be a group. $\neutral[G]$ is a idempotent element of $G$. \end{lemma} \begin{lemma}\label{group_divison_right} Let $G$ be a group. Let $a,b,c \in G$. Then $a \cdot c = b \cdot c$ iff $a = b$. \end{lemma} \begin{proof} Take $a,b,c \in G$ such that $a \cdot c = b \cdot c$. There exist $c' \in G$ such that $c \cdot c' = \neutral[G]$. Therefore $a \cdot c = b \cdot c$ iff $(a \cdot c) \cdot c' = (b \cdot c) \cdot c'$. \begin{align*} (a \cdot c) \cdot c' &= a \cdot (c \cdot c') \explanation{by \cref{semigroup_assoc,group_implies_monoid,monoid_implies_semigroup}}\\ &= a \cdot \neutral[G] \explanation{by \cref{group_inverse}}\\ &= a \explanation{by \cref{group_implies_monoid,monoid_right}} \end{align*} \begin{align*} (b \cdot c) \cdot c' &= b \cdot (c \cdot c') \explanation{by \cref{semigroup_assoc,group_implies_monoid,monoid_implies_semigroup}}\\ &= b \cdot \neutral[G] \explanation{by \cref{group_inverse}}\\ &= b \explanation{by \cref{group_implies_monoid,monoid_right}} \end{align*} $(a \cdot c) \cdot c' = (b \cdot c) \cdot c'$ iff $a \cdot c = b \cdot c$ by assumption. $a = b$ iff $a \cdot c = b \cdot c$ by assumption. \end{proof} \begin{proposition}\label{leftinverse_eq_rightinverse} Let $G$ be a group and assume $a \in G$. Then there exist $b\in G$ such that $a \cdot b = \neutral[G]$ and $b \cdot a = \neutral[G]$. \end{proposition} \begin{proof} There exist $b \in G$ such that $a \cdot b = \neutral[G]$. There exist $c \in G$ such that $b \cdot c = \neutral[G]$. $a \cdot b = \neutral[G]$. $(a \cdot b) \cdot c = (\neutral[G]) \cdot c$. $(a \cdot b) \cdot c = a \cdot (b \cdot c)$. $a \cdot \neutral[G] = \neutral[G] \cdot c$. $c = c \cdot \neutral[G]$. $c = \neutral[G] \cdot c$. $a \cdot \neutral[G] = c \cdot \neutral[G]$. $a \cdot \neutral[G] = c$ by \cref{monoid_right,group_divison_right}. $a = c$ by \cref{monoid_right,group_divison_right,neutral_is_idempotent}. $b \cdot a = b \cdot c$. $b \cdot a = \neutral[G]$. \end{proof} \begin{definition}\label{group_abelian} $G$ is an abelian group iff $G$ is a group and for all $g,h \in G$ $\mul[G](g,h) = \mul[G](h,g)$. \end{definition} \begin{definition}\label{group_automorphism} Let $f$ be a function. $f$ is a group-automorphism iff $G$ is a group and $\dom{f}=G$ and $\ran{f}=G$. \end{definition} \begin{definition}\label{trivial_group} $G$ is the trivial group iff $G$ is a group and $\{\neutral[G]\}=G$. \end{definition} \begin{theorem}\label{trivial_implies_abelian} Let $G$ be a group. Suppose $G$ is the trivial group. Then $G$ is an abelian group. \end{theorem}