\import{function.tex} \section{Magmas} \begin{struct}\label{magma} A magma $A$ is a onesorted structure equipped with \begin{enumerate} \item $\mul$ \end{enumerate} such that \begin{enumerate} \item\label{magma_welldef} for all $a, b\in \carrier[A]$ we have $\mul[A](a,b)\in \carrier[A]$. \end{enumerate} \end{struct} \begin{abbreviation}\label{cdot} $a\cdot b = \mul(a,b)$. \end{abbreviation} \begin{abbreviation}\label{idempotentelement} $a$ is an idempotent element of $A$ iff $a\in\carrier[A]$ and $\mul[A](a,a) = a$. \end{abbreviation} \begin{definition}\label{idempotents} $\idempotents{A} = \{a\in\carrier[A]\mid \mul[A](a,a) = a\}$. \end{definition} %\begin{definition}\label{rightinternalorbit} % $\rightinternalorbit{a}{A} = \{\mul[A](a,a') \mid a'\in\carrier[A]\}$. %\end{definition} \begin{abbreviation}\label{commutes} $a$ commutes with $b$ iff $a\cdot b = b\cdot a$. \end{abbreviation} \begin{definition}\label{submagma} $A$ is a submagma of $B$ iff $A$ is a magma and $B$ is a magma and $\carrier[A]\subseteq \carrier[B]$ and $\mul[A]\subseteq \mul[B]$. \end{definition} \begin{proposition}\label{submagma_transitive} Suppose $A$ is a submagma of $B$. Suppose $B$ is a submagma of $C$. Then $A$ is a submagma of $C$. \end{proposition} \begin{proof} Follows by \cref{submagma,subseteq_transitive}. \end{proof} \begin{struct}\label{unitalmagma} A unital magma $A$ is a magma equipped with \begin{enumerate} \item $\neutral$ \end{enumerate} such that \begin{enumerate} \item\label{unitalmagma_type} $\neutral[A]\in \carrier[A]$. \item\label{unitalmagma_right} for all $a\in \carrier[A]$ we have $\mul[A](a,\neutral[A]) = a$. \item\label{unitalmagma_left} for all $a\in \carrier[A]$ we have $\mul[A](\neutral[A], a) = a$. \end{enumerate} \end{struct} \begin{proposition}\label{unitalmagma_mul_neutral_neutral} Let $A$ be a unital magma. Then $\mul(\neutral,\neutral) = \neutral$. \end{proposition} \begin{proposition}\label{unitalmagma_neutral_unique} Let $A$ be a unital magma. Let $e$ be a set such that $e\in A$ and for all $x\in A$ we have $\mul(x, e) = x = \mul(e, x)$. Then $e = \neutral$. \end{proposition} \begin{proof} Follows by \cref{unitalmagma_type,unitalmagma_left}. \end{proof} \begin{definition}[Left orbit]\label{left_orbit} $\LeftOrb{x}{A} = \{\mul[A](a,x) \mid a\in\carrier[A] \}$. \end{definition} \begin{proposition}\label{eq_left_orbit_witness} Let $A$ be a magma. Let $e,f\in\carrier[A]$. Suppose $\LeftOrb{e}{A} = \LeftOrb{f}{A}$. Let $x\in\carrier[A]$. Then there exists $y\in\carrier[A]$ such that $x\cdot e = y\cdot f$. \end{proposition} \begin{proof} We have $x\cdot e\in \LeftOrb{e}{A}$ by \cref{left_orbit}. Thus $x\cdot e\in\LeftOrb{f}{A}$ by assumption. Take $y\in\carrier[A]$ such that $x\cdot e = y\cdot f$ by \cref{left_orbit}. \end{proof}