\import{algebra/semigroup.tex} \section{Monoid} \begin{struct}\label{monoid} A monoid $A$ is a semigroup equipped with \begin{enumerate} \item $\neutral$ \end{enumerate} such that \begin{enumerate} \item\label{monoid_type} $\neutral[A]\in \carrier[A]$. \item\label{monoid_right} for all $a\in \carrier[A]$ we have $\mul[A](a,\neutral[A]) = a$. \item\label{monoid_left} for all $a\in \carrier[A]$ we have $\mul[A](\neutral[A], a) = a$. \end{enumerate} \end{struct} \begin{corollary}\label{monoid_implies_semigroup} Let $A$ be a monoid. Then $A$ is a semigroup. \end{corollary}