\import{algebra/magma.tex} \section{Quasigroups} \begin{struct}\label{quasigroup} A quasigroup $A$ is a magma equipped with \begin{enumerate} \item $\ldiv$ \item $\rdiv$ \end{enumerate} such that \begin{enumerate} \item for all $a, b\in A$ we have $\ldiv (a,b)\in A$. \item for all $a, b\in A$ we have $\rdiv (a,b)\in A$. \item for all $a,b \in A$ we have $b = \mul(a,\ldiv (a,b))$. \item for all $a,b \in A$ we have $b = \ldiv(a,\mul (a,b))$. \item for all $a,b \in A$ we have $b = \mul(\rdiv (b,a),a)$. \item for all $a,b \in A$ we have $b = \rdiv(\mul (b,a),a)$. \end{enumerate} \end{struct} % Cancelling an element on the left. \begin{lemma}\label{quasigroup_cancel_left} Let $A$ be a quasigroup. Let $a,b,c \in A$. Suppose $\mul(a,b) = \mul(a,c)$. Then $b = c$. \end{lemma} % Cancelling an element on the right. \begin{lemma}\label{quasigroup_cancel_right} Let $A$ be a quasigroup. Let $a,b,c \in A$. Suppose $\mul(a,c) = \mul(b,c)$. Then $a = b$. \end{lemma}