\import{algebra/magma.tex} \section{Semigroups} \begin{struct}\label{semigroup} A semigroup $A$ is a magma such that \begin{enumerate} %\item for all $a, b, c\in \carrier[A]$ we have $\mul[A](a,\mul[A](b,c)) = \mul[A](\mul[A](a,b),c)$. \item\label{semigroup_assoc} for all $a, b, c$ we have $\mul[A](a,\mul[A](b,c)) = \mul[A](\mul[A](a,b),c)$. \end{enumerate} \end{struct} \section{Regular semigroups} \begin{struct}\label{regularsemigroup} A regular semigroup $A$ is a semigroup such that \begin{enumerate} %\item for all $a\in \carrier[A]$ there exists $b\in\carrier[A]$ such that $\mul[A](a, \mul[A](b, a)) = a$. \item\label{regularsemigroup_regular} for all $a$ there exists $b\in\carrier[A]$ such that $\mul[A](a, \mul[A](b, a)) = a$. \end{enumerate} \end{struct} \section{Inverse semigroups} \begin{struct}\label{inversesemigroup} An inverse semigroup $A$ is a regular semigroup such that \begin{enumerate} \item\label{inversesemigroup_comm} for all $a,b\in\idempotents{A}$ we have $\mul[A](a, b) = \mul[A](b, a)$. \end{enumerate} \end{struct} \begin{proposition}\label{inversesemigroup_is_semigroup} Suppose $A$ is an inverse semigroup. Then $A$ is a semigroup. \end{proposition} \begin{proposition}\label{inversesemigroup_is_regularsemigroup} Suppose $A$ is an inverse semigroup. Then $A$ is a regular semigroup. \end{proposition} \begin{proposition}\label{idempotentelems_eq_iff_orbits_eq} Let $A$ be an inverse semigroup. Let $e,f\in\idempotents{A}$. % TODO use Orbits explicitly? Suppose for all $x\in\carrier[A]$ there exists $y\in\carrier[A]$ such that $x\cdot e = y\cdot f$. Suppose for all $x\in\carrier[A]$ there exists $y\in\carrier[A]$ such that $x\cdot f = y\cdot e$. Then $e = f$. \end{proposition} \begin{proof} Take $x, y\in\carrier[A]$ such that $e = x\cdot f$ and $f = y\cdot e$ by \cref{idempotents}. % \begin{align*} e &= x \cdot f \explanation{by assumption}\\ &= x\cdot (f\cdot f) \explanation{by \cref{idempotents}}\\ &= (x\cdot f)\cdot f \explanation{by \cref{semigroup_assoc,inversesemigroup_is_semigroup}}\\ &= e\cdot f \explanation{by assumption}\\ &= f\cdot e \explanation{by \hyperref[inversesemigroup_comm]{commutativity of idempotent elements}}\\ &= (y\cdot e)\cdot e \explanation{by assumption}\\ &= y\cdot (e\cdot e) \explanation{by \cref{semigroup_assoc,inversesemigroup_is_semigroup}}\\ &= y \cdot e \explanation{by \cref{idempotents}}\\ &= f \explanation{by assumption} \end{align*} \end{proof}