\section{Functions} \import{set.tex} \import{relation.tex} \import{relation/uniqueness.tex} \begin{abbreviation}\label{function} $f$ is a function iff $f$ is right-unique and $f$ is a relation. \end{abbreviation} % The builtin "-(-)" notation desugars to "\apply{-}{-}". \begin{definition}\label{apply} $\apply{f}{x} = \unions{\img{f}{\{x\}}}$. \end{definition} \begin{proposition}\label{function_rightunique} Let $f$ be a function. Suppose $(a,b), (a, b')\in f$. Then $b = b'$. \end{proposition} \begin{proof} Follows by \hyperref[rightunique]{right-uniqueness}. \end{proof} \begin{proposition}\label{function_apply_intro} Let $f$ be a function. Suppose $(a,b)\in f$. Then $f(a) = b$. \end{proposition} \begin{proof} Let $B = \img{f}{\{a\}}$. $B = \{b'\in\ran{f}\mid (a,b')\in f \}$ by \cref{img_singleton}. $b\in\ran{f}$. For all $b'\in B$ we have $(a, b')\in f$. For all $b', b''\in B$ we have $b' = b''$ by \hyperref[rightunique]{right-uniqueness}. Then $B = \{b\}$ by \cref{singleton_iff_inhabited_subsingleton}. Then $\unions{B} = b$. Thus $f(a) = b$ by \cref{apply}. \end{proof} \begin{proposition}\label{function_member_elim} Let $f$ be a function. Suppose $w\in f$. Then there exists $x\in\dom{f}$ such that $w = (x, f(x))$. \end{proposition} \begin{proof} Follows by \cref{apply,function_apply_intro,dom,relation}. \end{proof} \begin{proposition}\label{function_apply_elim} Let $f$ be a function. Suppose $x\in\dom{f}$. Then $(x,f(x))\in f$. \end{proposition} \begin{proof} Follows by \cref{dom_iff,function_apply_intro}. \end{proof} \begin{proposition}\label{function_apply_iff} Let $f$ be a function. $(a,b)\in f$ iff $a\in\dom{f}$ and $f(a) = b$. \end{proposition} \begin{proposition}\label{fun_subseteq} Let $f, g$ be functions. Suppose $\dom{f}\subseteq \dom{g}$. Suppose for all $x\in\dom{f}$ we have $f(x) = g(x)$. Then $f\subseteq g$. \end{proposition} \begin{proof} For all $x,y$ such that $(x,y)\in f$ we have $(x,y)\in g$. Follows by \cref{subseteq,relation}. \end{proof} \begin{proposition}[Function extensionality]\label{funext} Let $f, g$ be functions. Suppose $\dom{f} = \dom{g}$. Suppose for all $x$ we have $f(x) = g(x)$. Then $f = g$. \end{proposition} \begin{proof} $\dom{f}\subseteq \dom{g}\subseteq \dom{f}$. For all $x\in\dom{f}$ we have $f(x) = g(x)$. Thus $f\subseteq g$. For all $x\in\dom{g}$ we have $f(x) = g(x)$. Thus $g\subseteq f$. \end{proof} \begin{proposition}\label{fun_ran_iff} Let $f$ be a function. $b\in\ran{f}$ iff there exists $a\in\dom{f}$ such that $f(a) = b$. \end{proposition} \begin{proof} Follows by \cref{ran,function_apply_iff}. \end{proof} \begin{abbreviation}\label{function_on} $f$ is a function on $X$ iff $f$ is a function and $X = \dom{f}$. \end{abbreviation} \begin{abbreviation}\label{function_to} $f$ is a function to $Y$ iff $f$ is a function and for all $x\in\dom{f}$ we have $f(x)\in Y$. \end{abbreviation} \begin{proposition}\label{function_on_weaken_codom} Let $f$ be a function to $B$. Suppose $B\subseteq C$. Then $f$ is a function to $C$. \end{proposition} \begin{proposition}\label{function_to_ran} Let $f$ be a function to $B$. Then $\ran{f}\subseteq B$. \end{proposition} \begin{proof} Follows by \cref{ran,subseteq,apply,function_member_elim,pair_eq_iff,dom}. \end{proof} \begin{definition}\label{funs} $\funs{A}{B} = \{ f\in\rels{A}{B}\mid \text{$A\subseteq \dom{f}$ and $f$ is right-unique}\}$. \end{definition} \begin{abbreviation}\label{function_from_to} $f$ is a function from $X$ to $Y$ iff $f\in\funs{X}{Y}$. \end{abbreviation} \begin{proposition}\label{funs_is_relation} Let $f\in\funs{A}{B}$. Then $f$ is a relation. \end{proposition} \begin{proof} Follows by \cref{funs,rels_is_relation}. \end{proof} \begin{proposition}\label{funs_is_function} Let $f\in\funs{A}{B}$. Then $f$ is a function. \end{proposition} \begin{proposition}\label{funs_subseteq_rels} $\funs{A}{B}\subseteq\rels{A}{B}$. \end{proposition} \begin{proof} Follows by \cref{funs,subseteq}. \end{proof} \begin{proposition}\label{funs_intro} Let $f$ be a function to $B$ such that $A=\dom{f}$. Then $f\in\funs{A}{B}$. \end{proposition} \begin{proof} %$f$ is a function. $\dom{f}\subseteq A$ by \cref{subseteq_refl}. $\ran{f}\subseteq B$ by \cref{function_to_ran}. Thus $f\in\rels{A}{B}$ by \cref{rels_intro_dom_and_ran}. Thus $f\in\funs{A}{B}$ by \cref{funs}. \end{proof} \begin{proposition}\label{funs_elim} Let $f\in\funs{A}{B}$. Then $f$ is a function to $B$ such that $A\subseteq \dom{f}$. \end{proposition} \begin{proof} $f$ is a function by \cref{funs_is_function}. % and in particular, a relation. It suffices to show that for all $a\in\dom{f}$ we have $f(a)\in B$ by \cref{funs}. Fix $a\in\dom{f}$. Take $b$ such that $f(a) = b$. Thus $(a,b)\in f$ by \cref{function_apply_elim}. Now $b\in\ran{f}$ by \cref{ran_iff}. Finally $\ran{f}\subseteq B$ by \cref{funs,rels_ran_subseteq}. \end{proof} \begin{proposition}\label{funs_weaken_codom} Let $f\in\funs{A}{B}$. Suppose $B\subseteq D$. Then $f\in\funs{A}{D}$. \end{proposition} \begin{proof} $f\in\rels{A}{D}$ by \cref{funs,rels_weaken_codom}. Follows by \cref{funs}. \end{proof} \begin{proposition}\label{funs_type_apply} Let $f\in\funs{A}{B}$. Let $a\in A$. Then $f(a)\in B$. \end{proposition} \begin{proof} $a\in\dom{f}$ by \cref{funs_elim,subseteq}. $(a,f(a)) \in f$ by \cref{function_apply_iff}. Thus $f(a)\in B$ by \cref{funs,rels_type_ran}. \end{proof} \begin{proposition}\label{funs_tuple_intro} Let $f\in\funs{A}{B}$. Let $a\in A$. Then there exists $b\in B$ such that $(a,b)\in f$. \end{proposition} \begin{proof} $a\in\dom{f}$ by \cref{funs_elim,subseteq}. $(a,f(a)) \in f$ by \cref{function_apply_iff}. $f(a)\in B$ by \cref{funs_type_apply}. \end{proof} % LATER techincally ambiguous with the current grammar (as of 2022-04-24) % but the ambiguity gets resolved during interpretation. % the options are (probably): % % 1: function such that ( ... and for all ...) % 2: (function such that ...) and for all % % \begin{definition} % $f$ is a function from $X$ to $Y$ iff $f$ is a function such that $\dom{f} = X$ and for all $x\in X$ we have $f(x)\in Y$. % \end{definition} \begin{proposition}\label{funs_ran} Let $f\in\funs{A}{B}$. Then $\ran{f}\subseteq B$. \end{proposition} \begin{proof} $f$ is a function to $B$. \end{proof} \subsection{Image of a function} \begin{proposition}\label{img_of_function_intro} Let $f$ be a function. Suppose $x\in\dom{f}\inter X$. Then $f(x)\in \img{f}{X}$. \end{proposition} \begin{proof} $x\in X$ by \cref{inter_elim_right}. Thus $(x,f(x))\in f$ by \cref{function_apply_elim,inter_elim_left}. \end{proof} \begin{proposition}\label{img_of_function_elim} Let $f$ be a function. Suppose $y\in \img{f}{X}$. Then there exists $x\in\dom{f}\inter X$ such that $y = f(x)$. \end{proposition} \begin{proof} Take $x\in X$ such that $(x,y)\in f$. Then $x\in\dom{f}$ and $y = f(x)$ by \cref{dom_intro,function_apply_iff}. \end{proof} \begin{proposition}\label{img_of_function} Suppose $f$ is a function. $\img{f}{X} = \{ f(x) \mid x\in\dom{f}\inter X\}$. \end{proposition} \begin{proof} Follows by \cref{img_of_function_intro,img_of_function_elim}. \end{proof} \subsection{Families of functions} \begin{abbreviation}\label{family_of_functions} $F$ is a family of functions iff every element of $F$ is a function. \end{abbreviation} \begin{proposition}\label{unions_of_compatible_family_of_function_is_function} Let $F$ be a family of functions. Suppose that for all $f,g \in F$ we have $f\subseteq g$ or $g\subseteq f$. Then $\unions{F}$ is a function. \end{proposition} \begin{proof} $\unions{F}$ is a relation by \cref{unions_of_family_of_relations_is_relation}. For all $x,y, y'$ such that $(x,y),(x,y')\in \unions{F}$ there exists $f\in F$ such that $(x,y),(x,y')\in f$ by \cref{unions_iff,subseteq}. %Hence for all $x,y, y'$ such that $(x,y),(x,y')\in \unions{F}$ we have $y = y'$ % by \cref{rightunique}. Thus $\unions{F}$ is right-unique by \cref{rightunique}. \end{proof} \subsection{The empty function} \begin{proposition}\label{emptyset_is_function} $\emptyset$ is a function. \end{proposition} %\begin{proof} % For all $x,y, y'$ we have % if $(x,y),(x,y')\in \emptyset$, then $y = y'$. %\end{proof} \begin{proposition}\label{emptyset_is_function_on_emptyset} $\emptyset$ is a function on $\emptyset$. \end{proposition} \begin{proposition}\label{codom_of_emptyset_can_be_anything} $\emptyset$ is a function to $X$. \end{proposition} \begin{proposition}\label{emptyset_is_injective} $\emptyset$ is injective. \end{proposition} % LATER filter throws out the definition of injective, smh \subsection{Function composition} \begin{abbreviation}\label{composable} $g$ is composable with $f$ iff $\ran{f}\subseteq \dom{g}$. \end{abbreviation} \begin{proposition}\label{function_circ} Suppose $f$ and $g$ are right-unique. Then $g\circ f$ is a function. \end{proposition} \begin{proposition}\label{circ_apply} Let $f, g$ be functions. Suppose $g$ is composable with $f$. Let $x\in\dom{f}$. Then $(g\circ f)(x) = g(f(x))$. \end{proposition} \begin{proof} $(x, g(f(x)))\in g\circ f$ by \cref{circ,ran,subseteq,function_apply_elim}. $g\circ f$ is a function by \cref{function_circ}. Thus $(g\circ f)(x) = g(f(x))$ by \cref{function_apply_intro}. \end{proof} \begin{proposition}\label{dom_of_circ} Let $f, g$ be functions. Suppose $g$ is composable with $f$. $\dom{g\circ f} = \preimg{f}{\dom{g}}$. \end{proposition} \begin{proof} Every element of $\dom{g\circ f}$ is an element of $\preimg{f}{\dom{g}}$ by \cref{preimg,circ,dom,pair_eq_iff}. Follows by set extensionality. \end{proof} \begin{proposition}\label{dom_circ_exact} Let $f, g$ be functions. Suppose $\ran{f} = \dom{g}$. $\dom{g\circ f} = \dom{f}$. \end{proposition} \begin{proof} Every element of $\dom{g\circ f}$ is an element of $\dom{f}$. Follows by set extensionality. \end{proof} \begin{proposition}\label{ran_of_circ_intro} Let $f, g$ be functions. Suppose $g$ is composable with $f$. Suppose $y\in \img{g}{\ran{f}}$. Then $y\in \ran{g\circ f}$. \end{proposition} \begin{proof} Take $x\in\ran{f}$ such that $(x, y)\in g$. Take $x'\in\dom{f}$ such that $(x', x)\in f$. Then $(x', y) \in g\circ f$. Follows by \cref{ran_intro}. \end{proof} \begin{proposition}\label{ran_of_circ_elim} Let $f, g$ be functions. Suppose $g$ is composable with $f$. Suppose $y\in \ran{g\circ f}$. Then $y\in \img{g}{\ran{f}}$. \end{proposition} \begin{proof} Take $x\in\dom{f}$ such that $(x, y)\in g\circ f$ by \cref{circ,circ_iff,ran,dom}. $f(x)\in\ran{f}$. $(f(x), y)\in g$ by \cref{function_apply_intro,apply,circ_iff}. Follows by \cref{img_iff}. \end{proof} \begin{proposition}\label{ran_of_circ} Let $f, g$ be functions. Suppose $g$ is composable with $f$. Then $\ran{g\circ f} = \img{g}{\ran{f}}$. \end{proposition} \begin{proof} Follows by set extensionality. \end{proof} \begin{proposition}\label{ran_circ_exact} Let $f, g$ be functions. Suppose $\ran{f} = \dom{g}$. Then $\ran{g\circ f} = \ran{g}$. \end{proposition} \begin{proof} \begin{align*} \ran{g\circ f} &= \img{g}{\ran{f}} \explanation{by \cref{subseteq_refl,ran_of_circ}}\\ &= \img{g}{\dom{g}} \\ % by assumption &= \ran{g} \explanation{by \cref{img_dom}} \end{align*} \end{proof} \begin{proposition}\label{img_of_circ_elim} Let $f, g$ be functions. Let $A$ be a set. Suppose $\ran{f}\subseteq \dom{g}$. Suppose $c\in\img{g\circ f}{A}$. Then $c\in\img{g}{\img{f}{A}}$. \end{proposition} \begin{proof} Take $a\in A$ such that $(a,c)\in g\circ f$. Take $b$ such that $(a,b)\in f$ and $(b, c)\in g$. Then $b\in\img{f}{A}$. Follows by \cref{img_iff}. \end{proof} \begin{proposition}\label{img_of_circ} Let $f, g$ be functions. Let $A$ be a set. Suppose $\ran{f}\subseteq\dom{g}$. Then $\img{g\circ f}{A} = \img{g}{\img{f}{A}}$. \end{proposition} \begin{proof} For all $c$ we have $c\in\img{g}{\img{f}{A}}$ iff $c\in\img{g\circ f}{A}$ by \cref{circ_iff,img_iff}. Follows by \hyperref[setext]{extensionality}. \end{proof} \begin{proposition}\label{funs_circ} Let $f\in\funs{A}{B}$. Let $g\in\funs{B}{C}$. Then $g\circ f\in\funs{A}{C}$. \end{proposition} \begin{proof} $\dom{f} = A$ by \cref{funs}. $\dom{g} = B$ by \cref{funs}. $g$ is composable with $f$. Omitted. % TODO \end{proof} \subsection{Function restriction} \begin{proposition}\label{restrl_of_function_is_function} Let $f$ be a function. Let $A$ be a set. $\restrl{f}{A}$ is a function. \end{proposition} \begin{proposition}\label{restrl_of_function_apply} Let $f$ be a function. Suppose $A\subseteq\dom{f}$. Let $a\in A$. Then $(\restrl{f}{A})(a) = f(a)$. \end{proposition} \begin{proof} Then $(a,f(a))\in f$. Then $(a,f(a))\in \restrl{f}{A}$ by \cref{restrl_iff}. Thus $(\restrl{f}{A})(a) = f(a)$. \end{proof} \begin{proposition}\label{function_apply_default} Suppose $x\notin\dom{f}$. Then $f(x) = \emptyset$. \end{proposition} \begin{proof} $\img{f}{\{x\}} = \emptyset$ by \cref{setext,notin_emptyset,img_singleton_iff,dom_intro}. Follows by \cref{apply,unions_emptyset}. \end{proof} \subsection{Injections} \begin{proposition}\label{injective_function} Suppose $f$ is a function. $f$ is injective iff for all $x,y\in\dom{f}$ we have $f(x) = f(y) \implies x = y$. \end{proposition} \begin{proof} Follows by \cref{injective,function_apply_iff}. \end{proof} \begin{abbreviation}\label{injection} $f$ is an injection iff $f$ is an injective function. \end{abbreviation} \begin{definition}\label{inj} $\inj{A}{B} = \{f\in\funs{A}{B}\mid \text{for all $x,y\in A$ such that $f(x)=f(y)$ we have $x = y$}\}$. \end{definition} \begin{proposition}\label{inj_circ} Let $f\in\inj{A}{B}$. Let $g\in\inj{B}{C}$. Then $g\circ f\in\surj{A}{C}$. \end{proposition} \begin{proof} Omitted. % TODO \end{proof} \subsection{Surjections} \begin{abbreviation}\label{surjection} $f$ is a surjection onto $Y$ iff $f$ is a function such that $f$ is surjective on $Y$. \end{abbreviation} \begin{definition}\label{surj} $\surj{A}{B} = \{f\in\funs{A}{B}\mid \text{for all $b\in B$ there exists $a\in A$ such that $f(a) = b$}\}$. \end{definition} \begin{abbreviation}\label{surjection_from_to} $f$ is a surjection from $A$ to $B$ iff $f\in\surj{A}{B}$. \end{abbreviation} \begin{lemma}\label{surjection_ran} Let $f$ be a function. Then $f$ is surjective on $\ran{f}$. \end{lemma} \begin{proof} It suffices to show that for all $y\in\ran{f}$ there exists $x\in\dom{f}$ such that $f(x) = y$. Fix $y\in\ran{f}$. Take $x$ such that $(x,y)\in f$. Then $x\in\dom{f}$ and $f(x) = y$ by \cref{dom,function_apply_iff}. \end{proof} \begin{lemma}\label{surj_to_fun} Let $f\in\surj{A}{B}$. Then $f\in\funs{A}{B}$. \end{lemma} \begin{lemma}\label{fun_to_surj} Let $f\in\funs{A}{B}$. Then $f\in\surj{A}{\ran{f}}$. \end{lemma} \begin{proof} $f\in\rels{A}{\ran{f}}$ by \cref{funs,rels_restrict_ran}. Thus $f\in\funs{A}{\ran{f}}$ by \cref{funs}. It suffices to show that for all $b\in\ran{f}$ there exists $a\in A$ such that $f(a) = b$ by \cref{surj}. Fix $b\in\ran{f}$. Take $a$ such that $(a,b)\in f$. Thus $f(a)=b$ by \cref{function_apply_iff,funs_elim}. We have $a\in\dom{f} = A$. Follows by assumption. \end{proof} \begin{corollary}\label{ran_of_surj} Let $f\in\surj{A}{B}$. Then $\ran{f} = B$. \end{corollary} \begin{proof} % TODO clean We have $f$ is a function by \cref{surj,funs_is_function}. Now $\ran{f}\subseteq B$ by \cref{surj,funs_ran}. It suffices to show that every element of $B$ is an element of $\ran{f}$. It suffices to show that for all $b\in B$ there exists $a\in\dom{f}$ such that $f(a) = b$ by \cref{fun_ran_iff}. Fix $b\in B$. Take $a\in A$ such that $f(a) = b$ by \cref{surj}. Then $\dom{f} = A$ by \cref{surj,funs_elim}. \end{proof} \begin{corollary}\label{funs_surj_iff} Let $f\in\funs{A}{B}$. Then $f\in\surj{A}{B}$ iff $\ran{f} = B$. \end{corollary} \begin{proof} Follows by \cref{surj,fun_to_surj,ran_of_surj}. \end{proof} \begin{proposition}\label{surjections_circ} Let $f\in\surj{A}{B}$. Let $g\in\surj{B}{C}$. Then $g\circ f\in\surj{A}{C}$. \end{proposition} \begin{proof} $\dom{f} = A$ by \cref{surj,funs}. $\dom{g} = B = \ran{f}$ by \cref{surj,funs,ran_of_surj}. $\dom{g\circ f} = A$ by \cref{surj_to_fun,funs_is_function,dom_circ_exact}. Omitted. % TODO \end{proof} \subsection{Bijections} \begin{definition}\label{bijections} $\bijections{A}{B} = \{ f\in\surj{A}{B} \mid \text{$f$ is injective}\}$. \end{definition} \begin{abbreviation}\label{bijection} $f$ is a bijection from $A$ to $B$ iff $f\in\bijections{A}{B}$. \end{abbreviation} \begin{proposition}\label{bijections_to_funs} Every element of $\bijections{A}{B}$ is an element of $\funs{A}{B}$. \end{proposition} \begin{proof} Follows by \cref{bijections,surj}. \end{proof} \begin{proposition}\label{bijection_is_function} Every element of $\bijections{A}{B}$ is a function. \end{proposition} \begin{proof} Follows by \cref{bijections_to_funs,funs_is_function}. \end{proof} \begin{proposition}\label{bijections_dom} Let $f\in\bijections{A}{B}$. Then $\dom{f} = A$. \end{proposition} \begin{proof} $f\in\funs{A}{B}$ by \cref{bijections_to_funs}. Follows by \cref{funs}. \end{proof} \begin{proposition}\label{bijection_circ} Let $f$ be a bijection from $A$ to $B$. Let $g$ be a bijection from $B$ to $C$. Then $g\circ f$ is a bijection from $A$ to $C$. \end{proposition} \begin{proof} $g\circ f\in\surj{A}{C}$ by \cref{bijections,surjections_circ}. $g\circ f$ is an injection. \end{proof} \subsection{Converse as a function} \begin{proposition}\label{converse_of_function_is_injective} Let $f$ be a function. Then $\converse{f}$ is injective. % i.e. an injective relation. \end{proposition} \begin{proposition}\label{injective_converse_is_function} Suppose $f$ is injective. % NOTE: f need not be a function! Then $\converse{f}$ is a function. \end{proposition} \begin{proposition}\label{bijective_converse_is_function} Let $f$ be a bijection from $A$ to $B$. Then $\converse{f}$ is a function. \end{proposition} \begin{proof} Follows by \cref{bijections,injective_converse_is_function}. \end{proof} \begin{proposition}\label{bijective_converse_are_funs} Let $f$ be a bijection from $A$ to $B$. Then $\converse{f}\in\funs{B}{A}$. \end{proposition} \begin{proof} %\begin{align*} % \dom{\converse{f}} % &= \ran{f} % \explanation{by \cref{dom_converse}}\\ % &= B % \explanation{by \cref{ran_of_surj}} %\end{align*} $\dom{\converse{f}} = \ran{f} = B$ by \cref{bijections,dom_converse,ran_of_surj}. Omitted. % TODO \end{proof} \begin{proposition}\label{bijective_converse_are_surjs} Let $f$ be a bijection from $A$ to $B$. Then $\converse{f}\in\surj{B}{A}$. \end{proposition} \begin{proof} We have $\converse{f}\in\funs{B}{A}$ by \cref{bijective_converse_are_funs}. It suffices to show that $\ran{\converse{f}} = A$ by \cref{funs_surj_iff}. We have $\dom{f} = A$ by \cref{bijections_dom}. Thus $\ran{\converse{f}} = A$ by \cref{ran_converse}. \end{proof} \begin{proposition}\label{bijection_converse_is_bijection} Let $f$ be a bijection from $A$ to $B$. Then $\converse{f}$ is a bijection from $B$ to $A$. \end{proposition} \begin{proof} $\converse{f}\in\funs{B}{A}$ by \cref{bijective_converse_are_funs}. $\converse{f}$ is injective by \cref{bijection_is_function,converse_of_function_is_injective}. $\converse{f}\in\surj{B}{A}$ by \cref{bijective_converse_are_surjs}. Follows by \cref{bijections}. \end{proof} \subsubsection{Inverses of a function} \begin{abbreviation}\label{leftinverse} $g$ is a left inverse of $f$ iff for all $x\in\dom{f}$ we have $g(f(x)) = x$. \end{abbreviation} % This definition of right inverse is probably not particularly useful... \begin{abbreviation}\label{rightinverse} $g$ is a right inverse of $f$ iff $f\circ g = \identity{\dom{g}}$. \end{abbreviation} \begin{abbreviation}\label{rightinverseon} $g$ is a right inverse of $f$ on $B$ iff $f\circ g = \identity{B}$. \end{abbreviation} \begin{proposition}\label{injective_converse_is_leftinverse} Let $f$ be an injection. Then $\converse{f}$ is a left inverse of $f$. \end{proposition} \begin{proof} $\converse{f}$ is a function by \cref{injective_converse_is_function}. Omitted. % TODO \end{proof} \subsection{Identity function} \begin{proposition}\label{id_rightunique} $\identity{A}$ is right-unique. \end{proposition} \begin{proof} Follows by \cref{id,rightunique,pair_eq_iff}. \end{proof} \begin{proposition}\label{id_is_function} $\identity{A}$ is a function. \end{proposition} \begin{proposition}\label{id_is_function_on} $\identity{A}$ is a function on $A$. \end{proposition} \begin{proposition}\label{id_is_function_to} $\identity{A}$ is a function to $A$. \end{proposition} \begin{proposition}\label{id_is_function_from_to} $\identity{A}$ is a function from $A$ to $A$. \end{proposition} \begin{proof} $\identity{A}\in\rels{A}{A}$ by \cref{id_elem_rels}. Follows by \cref{funs,id_is_function_on,id_is_function_to}. \end{proof} \begin{proposition}\label{id_apply} Suppose $a\in A$. % TODO/FIXME fix grammar, then simplify %Then $\identity{A}(a) = a$. Suppose $f = \identity{A}$. Then $f(a) = a$. \end{proposition} \begin{proof} $(a,a)\in\identity{A}$ by \cref{id_iff}. Follows by \cref{id_is_function,function_apply_intro}. \end{proof} \begin{proposition}\label{id_elem_funs} $\identity{A}\in\funs{A}{A}$. \end{proposition} \begin{proof} $\identity{A}$ is a function. $\identity{A}\in\rels{A}{A}$. $\dom{\identity{A}}\subseteq A$. \end{proof} \begin{proposition}\label{id_elem_surjections} $\identity{A}\in\surj{A}{A}$. \end{proposition} \begin{proof} We have $\identity{A}\in\funs{A}{A}$ by \cref{id_elem_funs}. Omitted. % TODO \end{proof} \begin{proposition}\label{id_elem_bijections} $\identity{A}\in\bijections{A}{A}$. \end{proposition} \begin{proof} $\identity{A}\in\surj{A}{A}$ by \cref{id_elem_surjections}. $\identity{A}$ is injective by \cref{identity_injective}. Follows by \cref{bijections}. \end{proof}