\import{set.tex} \import{nat.tex} \begin{datatype} The set $\propform$ is generated as follows. \begin{enumerate} \item if $n\in\naturals$, then $\propvar{n}\in\propform$ \item $\propbot\in\propform$ \item if $p, q\in\propform$, then $p\propto q\in\propform$ \end{enumerate} \end{datatype} \begin{abbreviation} $\propnot p = p\propto\propbot$. \end{abbreviation} \begin{inductive} \begin{enumerate} \item (Detachment) If $\deducible{p}$ and $\deducible{p\propto q}$, then $\deducible{q}$ \item (Implosion) $\deducible{p\propto q\propto p}$ \item (Chain) $\deducible{(p\propto q\propto r)\propto(p\propto q)\propto(p\propto r)}$ \item (Negation) $\propnot\propnot p\to p$ \end{enumerate} \end{inductive} \begin{lemma} Suppose $\deducible{q}$. Then $\deducible{p\propto q}$. \end{lemma} \begin{primrec} Recursively define a predicate $\propeval{-}{-}$ on $\propform$ as follows. % TODO continue... \end{primrec}