\import{set/suc.tex} \import{set.tex} \section{Natural numbers} \begin{abbreviation}\label{num_inductive_set} $A$ is an inductive set iff $\emptyset\in A$ and for all $a\in A$ we have $\suc{a}\in A$. \end{abbreviation} \begin{axiom}\label{num_naturals_inductive_set} $\naturals$ is an inductive set. \end{axiom} \begin{axiom}\label{num_naturals_smallest_inductive_set} Let $A$ be an inductive set. Then $\naturals\subseteq A$. \end{axiom} \begin{abbreviation}\label{num_naturalnumber} $n$ is a natural number iff $n\in \naturals$. \end{abbreviation} \begin{lemma}\label{num_emptyset_in_naturals} $\emptyset\in\naturals$. \end{lemma} \begin{signature}\label{num_addition_is_set} $x+y$ is a set. \end{signature} \begin{axiom}\label{num_addition_on_naturals} $x+y$ is a natural number iff $x$ is a natural number and $y$ is a natural number. \end{axiom} \begin{abbreviation}\label{num_zero_is_emptyset} $\zero = \emptyset$. \end{abbreviation} \begin{axiom}\label{num_addition_axiom_1} For all $x \in \naturals$ $x + \zero = \zero + x = x$. \end{axiom} \begin{axiom}\label{num_addition_axiom_2} For all $x, y \in \naturals$ $x + \suc{y} = \suc{x} + y = \suc{x+y}$. \end{axiom} \begin{lemma}\label{num_naturals_is_equal_to_two_times_naturals} $\{x+y \mid x \in \naturals, y \in \naturals \} = \naturals$. \end{lemma}