\import{set/suc.tex} \import{set.tex} \section{Natural numbers} \begin{abbreviation}\label{inductive_set} $A$ is an inductive set iff $\emptyset\in A$ and for all $a\in A$ we have $\suc{a}\in A$. \end{abbreviation} \begin{axiom}\label{naturals_inductive_set} $\naturals$ is an inductive set. \end{axiom} \begin{axiom}\label{naturals_smallest_inductive_set} Let $A$ be an inductive set. Then $\naturals\subseteq A$. \end{axiom} \begin{abbreviation}\label{naturalnumber} $n$ is a natural number iff $n\in \naturals$. \end{abbreviation} \begin{lemma}\label{emptyset_in_naturals} $\emptyset\in\naturals$. \end{lemma} %\begin{abbreviation}\label{zero_is_emptyset} % $0 = \emptyset$. %\end{abbreviation} %\begin{definition}\label{additionpair} % $x$ is an Additionpair iff $x \in ((\naturals\times \naturals)\times \naturals)$. %\end{definition} %\begin{lemma}\label{zero_is_in_naturals} % Let $n\in \naturals$. $((n, \emptyset), n)$ is an Additionpair. %\end{lemma} %\begin{definition}\label{valid_additionpair} % $x$ is a vaildaddition iff there exist $n \in \naturals$ we have $x = ((0, n), n)$. %\end{definition} \begin{axiom}\label{addpair_set} $\addpair$ is a set. \end{axiom} \begin{axiom}\label{addition_naturals} $x \in \addpair$ iff $x \in ((\naturals\times \naturals)\times \naturals)$ and there exist $n \in \naturals$ such that $x = ((n, \emptyset), n)$. \end{axiom}