\import{set/suc.tex} \section{Natural numbers} \begin{abbreviation}\label{inductive_set} $A$ is an inductive set iff $\emptyset\in A$ and for all $a\in A$ we have $\suc{a}\in A$. \end{abbreviation} \begin{axiom}\label{naturals_inductive_set} $\naturals$ is an inductive set. \end{axiom} \begin{axiom}\label{naturals_smallest_inductive_set} Let $A$ be an inductive set. Then $\naturals\subseteq A$. \end{axiom} \begin{abbreviation}\label{naturalnumber} $n$ is a natural number iff $n\in\naturals$. \end{abbreviation}