\import{order/order.tex} \import{relation.tex} \import{set/suc.tex} \section{The real numbers} \begin{signature} $\reals$ is a set. \end{signature} \begin{signature} $x + y$ is a set. \end{signature} \begin{signature} $x \rmul y$ is a set. \end{signature} \begin{axiom}\label{reals_axiom_order} $\lt[\reals]$ is an order on $\reals$. \end{axiom} \begin{abbreviation}\label{lesseq_on_reals} $x \leq y$ iff $(x,y) \in \lt[\reals]$. \end{abbreviation} \begin{abbreviation}\label{less_on_reals} $x < y$ iff it is wrong that $y \leq x$. \end{abbreviation} \begin{abbreviation}\label{greater_on_reals} $x > y$ iff $y \leq x$. \end{abbreviation} \begin{abbreviation}\label{greatereq_on_reals} $x \geq y$ iff it is wrong that $x < y$. \end{abbreviation} \begin{abbreviation}\label{is_positiv} $x$ is positiv iff $x > \zero$. \end{abbreviation} %Structure TODO: % Take as may axioms as needed - Tarski Axioms of reals %Implement Naturals -> Integer -> rationals -> reals \subsection{Creation of natural numbers} \subsubsection{Defenition and axioms} \begin{abbreviation}\label{inductive_set} $A$ is an inductive set iff $\emptyset\in A$ and for all $a\in A$ we have $\suc{a}\in A$. \end{abbreviation} \begin{abbreviation}\label{zero_is_emptyset} $\zero = \emptyset$. \end{abbreviation} \begin{axiom}\label{reals_axiom_zero_in_reals} $\zero \in \reals$. \end{axiom} \begin{axiom}\label{one_in_reals} $1 \in \reals$. \end{axiom} \begin{axiom}\label{zero_neq_one} $\zero \neq 1$. \end{axiom} \begin{axiom}\label{one_is_suc_zero} $\suc{\zero} = 1$. \end{axiom} \begin{definition}\label{naturals} $\naturals = \{ x \in \reals \mid \exists y \in \reals. \suc{y} = x \lor x = \zero \}$. \end{definition} \begin{lemma}\label{naturals_subseteq_reals} $\naturals \subseteq \reals$. \end{lemma} %\begin{inductive}\label{naturals_subset_reals} % Define $\naturals \subseteq \reals$ inductively as follows. % \begin{enumerate} % \item $\zero \in \naturals$. % \item If $n\in \naturals$, then $\suc{n} \in \naturals$. %Naproche translate this to for all n \in R \suc{n} \in R we want something like the definition before. % \end{enumerate} %\end{inductive} \begin{axiom}\label{suc_eq_plus_one} For all $n \in \naturals$ we have $\suc{n} = n + 1$. \end{axiom} \begin{abbreviation}\label{is_a_natural_number} $n$ is a natural number iff $n \in \naturals$. \end{abbreviation} \begin{axiom}\label{naturals_addition_axiom_1} For all $n \in \naturals$ $n + \zero = \zero + n = n$. \end{axiom} \begin{axiom}\label{naturals_addition_axiom_2} For all $n, m \in \naturals$ $n + \suc{m} = \suc{n} + m = \suc{n+m}$. \end{axiom} \begin{axiom}\label{naturals_mul_axiom_1} For all $n \in \naturals$ we have $n \rmul \zero = \zero$. \end{axiom} \begin{axiom}\label{naturals_mul_axiom_2} For all $n,m \in \naturals$ we have $\suc{n} \rmul m = (n \rmul m) + m$. \end{axiom} \begin{axiom}\label{addition_on_naturals} If $x$ is a natural number and $y$ is a natural number then $x+y$ is a natural number. \end{axiom} \subsubsection{Properties and Facts natural numbers} \begin{proposition}\label{naturals_kommu} For all $n,m \in \naturals$ we have $n + m = m + n$. \end{proposition} \begin{proof} \begin{byCase} \caseOf{$n = \emptyset$.} Trivial. \caseOf{$m = \emptyset$.} Trivial. \caseOf{$n \neq \emptyset \land m \neq \emptyset$.} Omitted. \end{byCase} \end{proof} \begin{lemma}\label{naturals_inductive_set} $\naturals$ is an inductive set. \end{lemma} \begin{lemma}\label{naturals_smallest_inductive_set} Let $A$ be an inductive set. Then $\naturals\subseteq A$. \end{lemma} \begin{lemma}\label{naturals_is_equal_to_two_times_naturals} $\{x+y \mid x \in \naturals, y \in \naturals \} = \naturals$. \end{lemma} \begin{proof} Omitted. \end{proof} %\begin{lemma}\label{oeder_on_naturals} % $\lt[\reals] \inter (\naturals \times \naturals)$ is an order on $\naturals$. %\end{lemma} \subsection{The Intergers} \begin{axiom}\label{reals_axiom_dense} For all $x,y \in \reals$ if $x < y$ then there exist $z \in \reals$ such that $x < z$ and $z < y$. \end{axiom} \begin{axiom}\label{reals_axiom_assoc} For all $x,y,z \in \reals$ $(x + y) + z = x + (y + z)$ and $(x \rmul y) \rmul z = x \rmul (y \rmul z)$. \end{axiom} \begin{axiom}\label{reals_axiom_kommu} For all $x,y \in \reals$ $x + y = y + x$ and $x \rmul y = y \rmul x$. \end{axiom} \begin{axiom}\label{reals_axiom_zero} For all $x \in \reals$ $x + \zero = x$. \end{axiom} \begin{axiom}\label{reals_axiom_one} For all $x \in \reals$ we have $x \rmul 1 = x$. \end{axiom} \begin{axiom}\label{reals_axiom_add_invers} For all $x \in \reals$ there exist $y \in \reals$ such that $x + y = \zero$. \end{axiom} \begin{axiom}\label{reals_axiom_mul_invers} For all $x \in \reals$ such that $x \neq \zero$ there exist $y \in \reals$ such that $x \rmul y = 1$. \end{axiom} \begin{axiom}\label{reals_axiom_disstro1} For all $x,y,z \in \reals$ $x \rmul (y + z) = (x \rmul y) + (x \rmul z)$. \end{axiom} \begin{axiom}\label{reals_axiom_dedekind_complete} For all $X,Y,x,y$ such that $X,Y \subseteq \reals$ and $x \in X$ and $y \in Y$ and $x < y$ we have there exist $z \in \reals$ such that $x < z < y$. \end{axiom} \begin{proposition}\label{reals_disstro2} For all $x,y,z \in \reals$ $(y + z) \rmul x = (y \rmul x) + (z \rmul x)$. \end{proposition} \begin{proof} Omitted. \end{proof} \begin{proposition}\label{reals_reducion_on_addition} For all $x,y,z \in \reals$ if $x + y = x + z$ then $y = z$. \end{proposition} \begin{proof} Omitted. \end{proof} %\begin{signature}\label{invers_is_set} % $\addInv{y}$ is a set. %\end{signature} %\begin{definition}\label{add_inverse} % $\addInv{y} = \{ x \mid \exists k \in \reals. k + y = \zero \land x \in k\}$. %\end{definition} %\begin{definition}\label{add_inverse_natural_language} % $x$ is additiv inverse of $y$ iff $x = \addInv{y}$. %\end{definition} %\begin{lemma}\label{rminus} % $x \rminus \addInv{x} = \zero$. %\end{lemma} \begin{lemma}\label{reals_add_of_positiv} Let $x,y \in \reals$. Suppose $x$ is positiv and $y$ is positiv. Then $x + y$ is positiv. \end{lemma} \begin{proof} Omitted. \end{proof} \begin{lemma}\label{reals_mul_of_positiv} Let $x,y \in \reals$. Suppose $x$ is positiv and $y$ is positiv. Then $x \rmul y$ is positiv. \end{lemma} \begin{proof} Omitted. \end{proof} \begin{lemma}\label{order_reals_lemma0} For all $x \in \reals$ we have not $x < x$. \end{lemma} \begin{proof} Omitted. \end{proof} \begin{lemma}\label{order_reals_lemma1} Let $x,y,z \in \reals$. Suppose $\zero < x$. Suppose $y < z$. Then $(y \rmul x) < (z \rmul x)$. \end{lemma} \begin{proof} Omitted. %There exist $k \in \reals$ such that $y + k = z$ and $k > \zero$ by \cref{reals_definition_order_def}. %\begin{align*} % (z \rmul x) \\ % &= ((y + k) \rmul x) \\ % &= ((y \rmul x) + (k \rmul x)) \explanation{by \cref{reals_disstro2}} %\end{align*} %Then $(k \rmul x) > \zero$. %Therefore $(z \rmul x) > (y \rmul x)$. \end{proof} \begin{lemma}\label{order_reals_lemma2} Let $x,y,z \in \reals$. Suppose $\zero < x$. Suppose $y < z$. Then $(x \rmul y) < (x \rmul z)$. \end{lemma} \begin{proof} Omitted. \end{proof} \begin{lemma}\label{order_reals_lemma3} Let $x,y,z \in \reals$. Suppose $\zero < x$. Suppose $y < z$. Then $(x \rmul z) < (x \rmul y)$. \end{lemma} \begin{proof} Omitted. \end{proof} \begin{lemma}\label{order_reals_lemma00} For all $x,y \in \reals$ such that $x > y$ we have $x \geq y$. \end{lemma} \begin{proof} Omitted. \end{proof} \begin{lemma}\label{order_reals_lemma5} For all $x,y \in \reals$ such that $x < y$ we have $x \leq y$. \end{lemma} \begin{proof} Omitted. \end{proof} \begin{lemma}\label{order_reals_lemma6} For all $x,y \in \reals$ such that $x \leq y \leq x$ we have $x=y$. \end{lemma} \begin{proof} Omitted. \end{proof} \begin{lemma}\label{reals_minus} Assume $x,y \in \reals$. If $x \rminus y = \zero$ then $x=y$. \end{lemma} \begin{proof} Omitted. \end{proof} \begin{definition}\label{upper_bound} $x$ is an upper bound of $X$ iff for all $y \in X$ we have $x > y$. \end{definition} \begin{definition}\label{least_upper_bound} $x$ is a least upper bound of $X$ iff $x$ is an upper bound of $X$ and for all $y$ such that $y$ is an upper bound of $X$ we have $x \leq y$. \end{definition} \begin{lemma}\label{supremum_unique} %Let $x,y \in \reals$ and let $X$ be a subset of $\reals$. If $x$ is a least upper bound of $X$ and $y$ is a least upper bound of $X$ then $x = y$. \end{lemma} \begin{proof} Omitted. \end{proof} \begin{definition}\label{supremum_reals} $x$ is the supremum of $X$ iff $x$ is a least upper bound of $X$. \end{definition} \begin{definition}\label{lower_bound} $x$ is an lower bound of $X$ iff for all $y \in X$ we have $x < y$. \end{definition} \begin{definition}\label{greatest_lower_bound} $x$ is a greatest lower bound of $X$ iff $x$ is an lower bound of $X$ and for all $y$ such that $y$ is an lower bound of $X$ we have $x \geq y$. \end{definition} \begin{lemma}\label{infimum_unique} If $x$ is a greatest lower bound of $X$ and $y$ is a greatest lower bound of $X$ then $x = y$. \end{lemma} \begin{proof} Omitted. \end{proof} \begin{definition}\label{infimum_reals} $x$ is the supremum of $X$ iff $x$ is a greatest lower bound of $X$. \end{definition} %\begin{proposition}\label{safe} % Contradiction. %\end{proposition} \section{The integers} %\begin{definition} % $\integers = \{z \in \reals \mid z = \zero or \} $. %\end{definition}