\import{nat.tex} \import{order/order.tex} \import{relation.tex} \section{The real numbers} \begin{signature} $\reals$ is a set. \end{signature} \begin{signature} $x + y$ is a set. \end{signature} \begin{signature} $x \times y$ is a set. \end{signature} \begin{axiom}\label{one_in_reals} $1 \in \reals$. \end{axiom} \begin{axiom}\label{reals_axiom_order} $\lt[\reals]$ is an order on $\reals$. %$\reals$ is an ordered set. \end{axiom} \begin{axiom}\label{reals_axiom_strictorder} $\lt[\reals]$ is a strict order. \end{axiom} \begin{axiom}\label{reals_axiom_dense} For all $x,y \in \reals$ if $(x,y)\in \lt[\reals]$ then there exist $z \in \reals$ such that $(x,z) \in \lt[\reals]$ and $(z,y) \in \lt[\reals]$. %For all $X,Y \subseteq \reals$ if for all $x,y$ $x\in X$ and $y \in Y$ such that $x \lt[\reals] y$ %then there exist a $z \in \reals$ such that if $x \neq z$ and $y \neq z$ $x \lt[\reals] z$ and $z \lt[\reals] y$. \end{axiom} \begin{axiom}\label{reals_axiom_order_def} $(x,y) \in \lt[\reals]$ iff there exist $z \in \reals$ such that $(\zero, z) \in \lt[\reals]$ and $x + z = y$. \end{axiom} \begin{lemma}\label{reals_one_bigger_than_zero} $(\zero,1) \in \lt[\reals]$. \end{lemma} \begin{axiom}\label{reals_axiom_assoc} For all $x,y,z \in \reals$ $(x + y) + z = x + (y + z)$ and $(x \times y) \times z = x \times (y \times z)$. \end{axiom} \begin{axiom}\label{reals_axiom_kommu} For all $x,y \in \reals$ $x + y = y + x$ and $x \times y = y \times x$. \end{axiom} \begin{axiom}\label{reals_axiom_zero_in_reals} $\zero \in \reals$. \end{axiom} %\begin{axiom}\label{reals_axiom_one_in_reals} % $\one \in \reals$. %\end{axiom} \begin{axiom}\label{reals_axiom_zero} %There exist $\zero \in \reals$ such that For all $x \in \reals$ $x + \zero = x$. \end{axiom} \begin{axiom}\label{reals_axiom_one} %There exist $1 \in \reals$ such that For all $x \in \reals$ $1 \neq \zero$ and $x \times 1 = x$. \end{axiom} \begin{axiom}\label{reals_axiom_add_invers} For all $x \in \reals$ there exist $y \in \reals$ such that $x + y = \zero$. \end{axiom} %TODO: Implementing Notion for negativ number such as -x. %\begin{abbreviation}\label{reals_notion_minus} % $y = -x$ iff $x + y = \zero$. %\end{abbreviation} %This abbrevation result in a killed process. \begin{axiom}\label{reals_axiom_mul_invers} For all $x \in \reals$ there exist $y \in \reals$ such that $x \neq \zero$ and $x \times y = 1$. \end{axiom} \begin{axiom}\label{reals_axiom_disstro1} For all $x,y,z \in \reals$ $x \times (y + z) = (x \times y) + (x \times z)$. \end{axiom} \begin{proposition}\label{reals_disstro2} For all $x,y,z \in \reals$ $(y + z) \times x = (y \times x) + (z \times x)$. \end{proposition} \begin{proposition}\label{reals_reducion_on_addition} For all $x,y,z \in \reals$ if $x + y = x + z$ then $y = z$. \end{proposition} \begin{signature} $\invers$ is a set. \begin{signature} %TODO: %x \rless y in einer signatur hinzufügen und dann axiom x+z = y und dann \rlt in def per iff %\inv{} für inverse benutzen. Per Signatur einfüheren und dann axiomatisch absicher %\cdot für multiklikation verwenden. %< für die relation benutzen. %\begin{signature} % $y^{\rightarrow}$ is a function. %\end{signature} %\begin{axiom}\label{notion_multi_invers} % If $y \in \reals$ then $\invers{y} \in \reals$ and $y \times y^{\rightarrow} = 1$. %\end{axiom} %\begin{abbreviation}\label{notion_fraction} % $\frac{x}{y} = x \times y^{\rightarrow}$. %\end{abbreviation} \begin{lemma}\label{order_reals_lemma1} For all $x,y,z \in \reals$ such that $(\zero,x) \in \lt[\reals]$ if $(y,z) \in \lt[\reals]$ then $((y \times x), (z \times x)) \in \lt[\reals]$. \end{lemma} \begin{lemma}\label{order_reals_lemma2} For all $x,y,z \in \reals$ such that $(\zero,x) \in \lt[\reals]$ if $(y,z) \in \lt[\reals]$ then $((x \times y), (x \times z)) \in \lt[\reals]$. \end{lemma} \begin{lemma}\label{order_reals_lemma3} For all $x,y,z \in \reals$ such that $(x,\zero) \in \lt[\reals]$ if $(y,z) \in \lt[\reals]$ then $((x \times z), (x \times y)) \in \lt[\reals]$. \end{lemma}