\import{nat.tex} \import{order/order.tex} \import{relation.tex} \section{The real numbers} %TODO: %\inv{} für inverse benutzen. Per Signatur einfüheren und dann axiomatisch absicher %\cdot für multiklikation verwenden. %< für die relation benutzen. % sup und inf einfügen \begin{signature} $\reals$ is a set. \end{signature} \begin{signature} $x \add y$ is a set. \end{signature} \begin{signature} $x \rmul y$ is a set. \end{signature} \begin{axiom}\label{one_in_reals} $1 \in \reals$. \end{axiom} \begin{axiom}\label{reals_axiom_order} $\lt[\reals]$ is an order on $\reals$. \end{axiom} \begin{axiom}\label{reals_axiom_strictorder} $\lt[\reals]$ is a strict order. \end{axiom} \begin{abbreviation}\label{less_on_reals} $x < y$ iff $(x,y) \in \lt[\reals]$. \end{abbreviation} \begin{abbreviation}\label{greater_on_reals} $x > y$ iff $y < x$. \end{abbreviation} \begin{abbreviation}\label{lesseq_on_reals} $x \leq y$ iff it is wrong that $x > y$. \end{abbreviation} \begin{abbreviation}\label{greatereq_on_reals} $x \geq y$ iff it is wrong that $x < y$. \end{abbreviation} \begin{axiom}\label{reals_axiom_dense} For all $x,y \in \reals$ if $x < y$ then there exist $z \in \reals$ such that $x < z$ and $z < y$. \end{axiom} \begin{axiom}\label{reals_axiom_order_def} $x < y$ iff there exist $z \in \reals$ such that $\zero < z$ and $x \add z = y$. \end{axiom} \begin{lemma}\label{reals_one_bigger_than_zero} $\zero < 1$. \end{lemma} \begin{axiom}\label{reals_axiom_assoc} For all $x,y,z \in \reals$ $(x \add y) \add z = x \add (y \add z)$ and $(x \rmul y) \rmul z = x \rmul (y \rmul z)$. \end{axiom} \begin{axiom}\label{reals_axiom_kommu} For all $x,y \in \reals$ $x \add y = y \add x$ and $x \rmul y = y \rmul x$. \end{axiom} \begin{axiom}\label{reals_axiom_zero_in_reals} $\zero \in \reals$. \end{axiom} \begin{axiom}\label{reals_axiom_zero} For all $x \in \reals$ $x \add \zero = x$. \end{axiom} \begin{axiom}\label{reals_axiom_one} For all $x \in \reals$ $1 \neq \zero$ and $x \rmul 1 = x$. \end{axiom} \begin{axiom}\label{reals_axiom_add_invers} For all $x \in \reals$ there exist $y \in \reals$ such that $x \add y = \zero$. \end{axiom} \begin{axiom}\label{reals_axiom_mul_invers} For all $x \in \reals$ such that $x \neq \zero$ there exist $y \in \reals$ such that $x \rmul y = 1$. \end{axiom} \begin{axiom}\label{reals_axiom_disstro1} For all $x,y,z \in \reals$ $x \rmul (y \add z) = (x \rmul y) \add (x \rmul z)$. \end{axiom} \begin{proposition}\label{reals_disstro2} For all $x,y,z \in \reals$ $(y \add z) \rmul x = (y \rmul x) \add (z \rmul x)$. \end{proposition} \begin{proposition}\label{reals_reducion_on_addition} For all $x,y,z \in \reals$ if $x \add y = x \add z$ then $y = z$. \end{proposition} \begin{axiom}\label{reals_axiom_dedekind_complete} For all $X,Y,x,y$ such that $X,Y \subseteq \reals$ and $x \in X$ and $y \in Y$ and $x < y$ we have there exist $z \in \reals$ such that $x < z < y$. \end{axiom} \begin{lemma}\label{order_reals_lemma1} For all $x,y,z \in \reals$ such that $\zero < x$ if $y < z$ then $(y \rmul x) < (z \rmul x)$. \end{lemma} \begin{lemma}\label{order_reals_lemma2} For all $x,y,z \in \reals$ such that $\zero < x$ if $y < z$ then $(x \rmul y) < (x \rmul z)$. \end{lemma} \begin{lemma}\label{order_reals_lemma3} For all $x,y,z \in \reals$ such that $x < \zero$ if $y < z$ then $(x \rmul z) < (x \rmul y)$. \end{lemma} \begin{lemma}\label{o4rder_reals_lemma} For all $x,y \in \reals$ if $x > y$ then $x \geq y$. \end{lemma} \begin{lemma}\label{order_reals_lemma5} For all $x,y \in \reals$ if $x < y$ then $x \leq y$. \end{lemma} \begin{lemma}\label{order_reals_lemma6} For all $x,y \in \reals$ if $x \leq y \leq x$ then $x=y$. \end{lemma} \begin{axiom}\label{reals_axiom_minus} For all $x \in \reals$ $x \rmiuns x = \zero$. \end{axiom} \begin{lemma}\label{reals_minus} Assume $x,y \in \reals$. If $x \rmiuns y = \zero$ then $x=y$. \end{lemma} \begin{definition}\label{upper_bound} $x$ is an upper bound of $X$ iff for all $y \in X$ we have $x > y$. \end{definition} \begin{definition}\label{least_upper_bound} $x$ is a least upper bound of $X$ iff $x$ is an upper bound of $X$ and for all $y$ such that $y$ is an upper bound of $X$ we have $x \leq y$. \end{definition} \begin{lemma}\label{supremum_unique} %Let $x,y \in \reals$ and let $X$ be a subset of $\reals$. If $x$ is a least upper bound of $X$ and $y$ is a least upper bound of $X$ then $x = y$. \end{lemma} \begin{definition}\label{supremum_reals} $x$ is the supremum of $X$ iff $x$ is a least upper bound of $X$. \end{definition} \begin{definition}\label{lower_bound} $x$ is an lower bound of $X$ iff for all $y \in X$ we have $x < y$. \end{definition} \begin{definition}\label{greatest_lower_bound} $x$ is a greatest lower bound of $X$ iff $x$ is an lower bound of $X$ and for all $y$ such that $y$ is an lower bound of $X$ we have $x \geq y$. \end{definition} \begin{lemma}\label{infimum_unique} If $x$ is a greatest lower bound of $X$ and $y$ is a greatest lower bound of $X$ then $x = y$. \end{lemma} \begin{definition}\label{infimum_reals} $x$ is the supremum of $X$ iff $x$ is a greatest lower bound of $X$. \end{definition}