\import{order/order.tex} \import{relation.tex} \import{set/suc.tex} \section{The real numbers} \begin{signature} $\reals$ is a set. \end{signature} \begin{signature} $x + y$ is a set. \end{signature} \begin{signature} $x \rmul y$ is a set. \end{signature} %Structure TODO: % Take as may axioms as needed - Tarski Axioms of reals %Implement Naturals -> Integer -> rationals -> reals \subsection{Basic axioms of the reals} \begin{axiom}\label{reals_axiom_zero_in_reals} $\zero \in \reals$. \end{axiom} \begin{axiom}\label{one_in_reals} $1 \in \reals$. \end{axiom} \begin{axiom}\label{zero_neq_one} $\zero \neq 1$. \end{axiom} \begin{inductive}\label{naturals_subset_reals} Define $\naturals \subseteq \reals$ inductively as follows. \begin{enumerate} \item $\zero \in \naturals$. \item If $n\in \naturals$, then $\successor{n} \in \naturals$. \end{enumerate} \end{inductive} %\begin{axiom}\label{negativ_is_set} % $\negativ{x}$ is a set. %\end{axiom} %\begin{axiom}\label{negativ_of} % $\negativ{x} \in \reals$ iff $x\in \reals$. %\end{axiom} % %\begin{axiom}\label{negativ_behavior} % $x + \negativ{x} = \zero$. %\end{axiom} \begin{definition}\label{reals_definition_order_def} $x < y$ iff there exist $z \in \reals$ such that $x + (z \rmul z) = y$. \end{definition} %\begin{axiom}\label{reals_axiom_order} % $\lt[\reals]$ is an order on $\reals$. %\end{axiom} %\begin{abbreviation}\label{lesseq_on_reals} % $x \leq y$ iff $(x,y) \in \lt[\reals]$. %\end{abbreviation} \begin{abbreviation}\label{less_on_reals} $x \leq y$ iff it is wrong that $y < x$. \end{abbreviation} \begin{abbreviation}\label{greater_on_reals} $x > y$ iff $y \leq x$. \end{abbreviation} \begin{abbreviation}\label{greatereq_on_reals} $x \geq y$ iff it is wrong that $x < y$. \end{abbreviation} \begin{axiom}\label{reals_axiom_dense} For all $x,y \in \reals$ if $x < y$ then there exist $z \in \reals$ such that $x < z$ and $z < y$. \end{axiom} \begin{axiom}\label{reals_axiom_assoc} For all $x,y,z \in \reals$ $(x + y) + z = x + (y + z)$ and $(x \rmul y) \rmul z = x \rmul (y \rmul z)$. \end{axiom} \begin{axiom}\label{reals_axiom_kommu} For all $x,y \in \reals$ $x + y = y + x$ and $x \rmul y = y \rmul x$. \end{axiom} \begin{axiom}\label{reals_axiom_zero} For all $x \in \reals$ $x + \zero = x$. \end{axiom} \begin{axiom}\label{reals_axiom_one} For all $x \in \reals$ we have $x \rmul 1 = x$. \end{axiom} \begin{axiom}\label{reals_axiom_add_invers} For all $x \in \reals$ there exist $y \in \reals$ such that $x + y = \zero$. \end{axiom} \begin{axiom}\label{reals_axiom_mul_invers} For all $x \in \reals$ such that $x \neq \zero$ there exist $y \in \reals$ such that $x \rmul y = 1$. \end{axiom} \begin{axiom}\label{reals_axiom_disstro1} For all $x,y,z \in \reals$ $x \rmul (y + z) = (x \rmul y) + (x \rmul z)$. \end{axiom} \begin{axiom}\label{reals_axiom_dedekind_complete} For all $X,Y,x,y$ such that $X,Y \subseteq \reals$ and $x \in X$ and $y \in Y$ and $x < y$ we have there exist $z \in \reals$ such that $x < z < y$. \end{axiom} \begin{proposition}\label{reals_disstro2} For all $x,y,z \in \reals$ $(y + z) \rmul x = (y \rmul x) + (z \rmul x)$. \end{proposition} \begin{proof} Omitted. \end{proof} \begin{proposition}\label{reals_reducion_on_addition} For all $x,y,z \in \reals$ if $x + y = x + z$ then $y = z$. \end{proposition} %\begin{signature}\label{invers_is_set} % $\addInv{y}$ is a set. %\end{signature} %\begin{definition}\label{add_inverse} % $\addInv{y} = \{ x \mid \exists k \in \reals. k + y = \zero \land x \in k\}$. %\end{definition} %\begin{definition}\label{add_inverse_natural_language} % $x$ is additiv inverse of $y$ iff $x = \addInv{y}$. %\end{definition} %\begin{lemma}\label{rminus} % $x \rminus \addInv{x} = \zero$. %\end{lemma} \begin{abbreviation}\label{is_positiv} $x$ is positiv iff $x > \zero$. \end{abbreviation} \begin{lemma}\label{reals_add_of_positiv} Let $x,y \in \reals$. Suppose $x$ is positiv and $y$ is positiv. Then $x + y$ is positiv. \end{lemma} \begin{proof} Omitted. \end{proof} \begin{lemma}\label{reals_mul_of_positiv} Let $x,y \in \reals$. Suppose $x$ is positiv and $y$ is positiv. Then $x \rmul y$ is positiv. \end{lemma} \begin{proof} Omitted. \end{proof} \begin{lemma}\label{order_reals_lemma0} For all $x \in \reals$ we have not $x < x$. \end{lemma} \begin{proof} Omitted. \end{proof} \begin{lemma}\label{order_reals_lemma1} Let $x,y,z \in \reals$. Suppose $\zero < x$. Suppose $y < z$. Then $(y \rmul x) < (z \rmul x)$. \end{lemma} \begin{proof} Omitted. %There exist $k \in \reals$ such that $y + k = z$ and $k > \zero$ by \cref{reals_definition_order_def}. %\begin{align*} % (z \rmul x) \\ % &= ((y + k) \rmul x) \\ % &= ((y \rmul x) + (k \rmul x)) \explanation{by \cref{reals_disstro2}} %\end{align*} %Then $(k \rmul x) > \zero$. %Therefore $(z \rmul x) > (y \rmul x)$. \end{proof} \begin{lemma}\label{order_reals_lemma2} Let $x,y,z \in \reals$. Suppose $\zero < x$. Suppose $y < z$. Then $(x \rmul y) < (x \rmul z)$. \end{lemma} \begin{proof} Omitted. \end{proof} \begin{lemma}\label{order_reals_lemma3} Let $x,y,z \in \reals$. Suppose $\zero < x$. Suppose $y < z$. Then $(x \rmul z) < (x \rmul y)$. \end{lemma} \begin{proof} Omitted. \end{proof} \begin{lemma}\label{order_reals_lemma00} For all $x,y \in \reals$ such that $x > y$ we have $x \geq y$. \end{lemma} \begin{lemma}\label{order_reals_lemma5} For all $x,y \in \reals$ such that $x < y$ we have $x \leq y$. \end{lemma} \begin{proof} Omitted. \end{proof} \begin{lemma}\label{order_reals_lemma6} For all $x,y \in \reals$ such that $x \leq y \leq x$ we have $x=y$. \end{lemma} \begin{proof} Omitted. \end{proof} \begin{lemma}\label{reals_minus} Assume $x,y \in \reals$. If $x \rminus y = \zero$ then $x=y$. \end{lemma} \begin{proof} Omitted. \end{proof} \begin{definition}\label{upper_bound} $x$ is an upper bound of $X$ iff for all $y \in X$ we have $x > y$. \end{definition} \begin{definition}\label{least_upper_bound} $x$ is a least upper bound of $X$ iff $x$ is an upper bound of $X$ and for all $y$ such that $y$ is an upper bound of $X$ we have $x \leq y$. \end{definition} \begin{lemma}\label{supremum_unique} %Let $x,y \in \reals$ and let $X$ be a subset of $\reals$. If $x$ is a least upper bound of $X$ and $y$ is a least upper bound of $X$ then $x = y$. \end{lemma} \begin{proof} Omitted. \end{proof} \begin{definition}\label{supremum_reals} $x$ is the supremum of $X$ iff $x$ is a least upper bound of $X$. \end{definition} \begin{definition}\label{lower_bound} $x$ is an lower bound of $X$ iff for all $y \in X$ we have $x < y$. \end{definition} \begin{definition}\label{greatest_lower_bound} $x$ is a greatest lower bound of $X$ iff $x$ is an lower bound of $X$ and for all $y$ such that $y$ is an lower bound of $X$ we have $x \geq y$. \end{definition} \begin{lemma}\label{infimum_unique} If $x$ is a greatest lower bound of $X$ and $y$ is a greatest lower bound of $X$ then $x = y$. \end{lemma} \begin{proof} Omitted. \end{proof} \begin{definition}\label{infimum_reals} $x$ is the supremum of $X$ iff $x$ is a greatest lower bound of $X$. \end{definition} \section{The natural numbers} \begin{abbreviation}\label{def_suc} $\successor{n} = n + 1$. \end{abbreviation} \begin{inductive}\label{naturals_definition_as_subset_of_reals} Define $\nat \subseteq \reals$ inductively as follows. \begin{enumerate} \item $\zero \in \nat$. \item If $n\in \nat$, then $\successor{n} \in \nat$. \end{enumerate} \end{inductive} \begin{lemma}\label{reals_order_suc} $n < \successor{n}$. \end{lemma} %\begin{proposition}\label{safe} % Contradiction. %\end{proposition} \section{The integers} %\begin{definition} % $\integers = \{z \in \reals \mid z = \zero or \} $. %\end{definition}