\import{order/order.tex} \import{relation.tex} \import{set/suc.tex} \import{ordinal.tex} \section{The real numbers} \begin{signature} $\reals$ is a set. \end{signature} \begin{signature} $x + y$ is a set. \end{signature} \begin{signature} $x \rmul y$ is a set. \end{signature} \begin{axiom}\label{reals_axiom_order} $\lt[\reals]$ is an order on $\reals$. \end{axiom} \begin{abbreviation}\label{lesseq_on_reals} $x \leq y$ iff $(x,y) \in \lt[\reals]$. \end{abbreviation} \begin{abbreviation}\label{less_on_reals} $x < y$ iff it is wrong that $y \leq x$. \end{abbreviation} \begin{abbreviation}\label{greater_on_reals} $x > y$ iff $y \leq x$. \end{abbreviation} \begin{abbreviation}\label{greatereq_on_reals} $x \geq y$ iff it is wrong that $x < y$. \end{abbreviation} \begin{abbreviation}\label{is_positiv} $x$ is positiv iff $x > \zero$. \end{abbreviation} %Structure TODO: % Take as may axioms as needed - Tarski Axioms of reals %Implement Naturals -> Integer -> rationals -> reals \subsection{Creation of natural numbers} \subsubsection{Defenition and axioms} \begin{abbreviation}\label{inductive_set} $A$ is an inductive set iff $\emptyset\in A$ and for all $a\in A$ we have $\suc{a}\in A$. \end{abbreviation} \begin{abbreviation}\label{zero_is_emptyset} $\zero = \emptyset$. \end{abbreviation} \begin{axiom}\label{reals_axiom_zero_in_reals} $\zero \in \reals$. \end{axiom} \begin{axiom}\label{one_in_reals} $1 \in \reals$. \end{axiom} \begin{axiom}\label{zero_neq_one} $\zero \neq 1$. \end{axiom} \begin{axiom}\label{one_is_suc_zero} $\suc{\zero} = 1$. \end{axiom} \begin{axiom}\label{naturals_subseteq_reals} $\naturals \subseteq \reals$. \end{axiom} \begin{axiom}\label{naturals_inductive_set} $\naturals$ is an inductive set. \end{axiom} \begin{axiom}\label{naturals_smallest_inductive_set} Let $A$ be an inductive set. Then $\naturals\subseteq A$. \end{axiom} \begin{abbreviation}\label{is_a_natural_number} $n$ is a natural number iff $n \in \naturals$. \end{abbreviation} \begin{axiom}\label{naturals_addition_axiom_1} For all $n \in \naturals$ $n + \zero = \zero + n = n$. \end{axiom} \begin{axiom}\label{naturals_addition_axiom_2} For all $n, m \in \naturals$ $n + \suc{m} = \suc{n} + m = \suc{n+m}$. \end{axiom} \begin{axiom}\label{naturals_mul_axiom_1} For all $n \in \naturals$ we have $n \rmul \zero = \zero = \zero \rmul n$. \end{axiom} \begin{axiom}\label{naturals_mul_axiom_2} For all $n,m \in \naturals$ we have $\suc{n} \rmul m = (n \rmul m) + m$. \end{axiom} \begin{axiom}\label{addition_on_naturals} If $x$ is a natural number and $y$ is a natural number then $x+y$ is a natural number. \end{axiom} \subsubsection{Natural numbers as ordinals} \begin{lemma}\label{nat_is_successor_ordinal} Let $n\in\naturals$. Suppose $n\neq \emptyset$. Then $n$ is a successor ordinal. \end{lemma} \begin{proof} Let $M = \{ m\in \naturals \mid\text{$m = \emptyset$ or $m$ is a successor ordinal}\}$. $M$ is an inductive set by \cref{suc_ordinal,naturals_inductive_set,successor_ordinal,emptyset_is_ordinal}. Now $M\subseteq \naturals\subseteq M$ by \cref{subseteq,naturals_smallest_inductive_set}. Thus $M = \naturals$. Follows by \cref{subseteq}. \end{proof} \begin{lemma}\label{nat_is_transitiveset} $\naturals$ is \in-transitive. \end{lemma} \begin{proof} Let $M = \{ m\in\naturals \mid \text{for all $n\in m$ we have $n\in\naturals$} \}$. $\emptyset\in M$. For all $n\in M$ we have $\suc{n}\in M$ by \cref{naturals_inductive_set,suc}. Thus $M$ is an inductive set. Now $M\subseteq \naturals\subseteq M$ by \cref{subseteq,naturals_smallest_inductive_set}. Hence $\naturals = M$. \end{proof} \begin{lemma}\label{natural_number_is_ordinal} Every natural number is an ordinal. \end{lemma} \begin{proof} Follows by \cref{suc_ordinal,suc_neq_emptyset,naturals_inductive_set,nat_is_successor_ordinal,successor_ordinal,suc_ordinal_implies_ordinal}. \end{proof} \begin{lemma}\label{omega_is_an_ordinal} $\naturals$ is an ordinal. \end{lemma} \begin{proof} Follows by \cref{natural_number_is_ordinal,transitive_set_of_ordinals_is_ordinal,nat_is_transitiveset}. \end{proof} \begin{lemma}\label{omega_is_a_limit_ordinal} $\naturals$ is a limit ordinal. \end{lemma} \begin{proof} $\emptyset\precedes \naturals$. If $n\in \naturals$, then $\suc{n}\in\naturals$. \end{proof} \subsubsection{Properties and Facts natural numbers} \begin{theorem}\label{induction_principle} Let $P$ be a set. Suppose $P \subseteq \naturals$. Suppose $\zero \in P$. Suppose $\forall n \in P. \suc{n} \in P$. Then $P = \naturals$. \end{theorem} \begin{proof} Trivial. \end{proof} \begin{proposition}\label{existence_of_suc} Let $n \in \naturals$. Suppose $n \neq \zero$. Then there exist $n' \in \naturals$ such that $\suc{n'} = n$. \end{proposition} \begin{proof} Follows by \cref{transitiveset,nat_is_transitiveset,suc_intro_self,successor_ordinal,nat_is_successor_ordinal}. \end{proof} \begin{proposition}\label{suc_eq_plus_one} Let $n \in \naturals$. Then $\suc{n} = n + 1$. \end{proposition} \begin{proof} Let $P = \{ n \in \naturals \mid n + 1 = 1 + n \}$. $\zero \in P$. It suffices to show that if $m \in P$ then $\suc{m} \in P$. \end{proof} \begin{proposition}\label{naturals_1_kommu} Let $n \in \naturals$. Then $1 + n = n + 1$. \end{proposition} \begin{proof} Follows by \cref{suc_eq_plus_one,naturals_addition_axiom_2,naturals_addition_axiom_1,naturals_inductive_set,one_is_suc_zero}. \end{proof} \begin{proposition}\label{naturals_add_kommu} For all $n \in \naturals$ we have for all $m\in \naturals$ we have $n + m = m + n$. \end{proposition} \begin{proof} Fix $n \in \naturals$. Let $P = \{ m \in \naturals \mid m + n = n + m \}$. It suffices to show that $P = \naturals$. $P \subseteq \naturals$. $\zero \in P$. It suffices to show that if $m \in P$ then $\suc{m} \in P$. \end{proof} \begin{proposition}\label{naturals_add_assoc} Suppose $n,m,k \in \naturals$. Then $n + (m + k) = (n + m) + k$. \end{proposition} \begin{proof} Let $P = \{ k \in \naturals \mid \text{for all $n',m' \in \naturals$ we have $n' + (m' + k) = (n' + m') + k$}\}$. $P \subseteq \naturals$. We show that $P = \naturals$. \begin{subproof} $\zero \in P$. It suffices to show that for all $k \in P$ we have $\suc{k} \in P$. Fix $k \in P$. \begin{align*} (n + m) + \suc{k} \\ &= \suc{(n+m) + k} \\ &= \suc{n + (m + k)} \\ &= n + \suc{(m + k)} \\ &= n + (m + \suc{k}) \end{align*} For all $n,m \in \naturals$ we have $(n + m) + \suc{k} = n + (m + \suc{k})$. \end{subproof} \end{proof} \begin{proposition}\label{naturals_rmul_one} For all $n \in \naturals$ we have $1 \rmul n = n$. \end{proposition} \begin{proof} Fix $n \in \naturals$. \begin{align*} 1 \rmul n \\ &= \suc{\zero} \rmul n \\ &= (\zero \rmul n) + n \\ &= (\zero) + n \\ &= n \end{align*} \end{proof} \begin{proposition}\label{naturals_add_remove_brakets} Suppose $n,m,k \in \naturals$. Then $(n + m) + k = n + m + k$. \end{proposition} \begin{proposition}\label{natural_disstro} Suppose $n,m,k \in \naturals$. Then $n \rmul (m + k) = (n \rmul m) + (n \rmul k)$. \end{proposition} \begin{proof} Let $P = \{n \in \naturals \mid \text{for all $m,k \in \naturals$ we have $n \rmul (m + k) = (n \rmul m) + (n \rmul k)$}\}$. $\zero \in P$. $P \subseteq \naturals$. It suffices to show that for all $n \in P$ we have $\suc{n} \in P$. Fix $n \in P$. It suffices to show that for all $m \in \naturals$ we have $\suc{n} \rmul (m + k) = (\suc{n} \rmul m) + (\suc{n} \rmul k)$. Fix $m \in \naturals$. It suffices to show that for all $k \in \naturals$ we have $\suc{n} \rmul (m + k) = (\suc{n} \rmul m) + (\suc{n} \rmul k)$. Fix $k \in \naturals$. \begin{align*} \suc{n} \rmul (m + k) \\ &= (n \rmul (m + k)) + (m + k) \\% \explanation{by \cref{naturals_mul_axiom_2}}\\ &= ((n \rmul m) + (n \rmul k)) + (m + k) \explanation{by assumption}\\ &= ((n \rmul m) + (n \rmul k)) + m + k \explanation{by \cref{naturals_add_remove_brakets,naturals_add_kommu}}\\ &= (((n \rmul m) + (n \rmul k)) + m) + k \explanation{by \cref{naturals_add_kommu,naturals_add_remove_brakets,naturals_add_assoc}}\\ &= (m + ((n \rmul m) + (n \rmul k))) + k \explanation{by \cref{naturals_add_kommu}}\\ &= ((m + (n \rmul m)) + (n \rmul k)) + k \explanation{by \cref{naturals_add_assoc}}\\ &= (((n \rmul m) + m) + (n \rmul k)) + k \explanation{by \cref{naturals_add_kommu}}\\ &= ((n \rmul m) + m) + ((n \rmul k) + k) \explanation{by \cref{naturals_add_assoc}}\\ &= (\suc{n} \rmul m) + (\suc{n} \rmul k) \explanation{by \cref{naturals_mul_axiom_2}} \end{align*} \end{proof} \begin{proposition}\label{naturals_mul_kommu} Let $n, m \in \naturals$. Then $n \rmul m = m \rmul n$. \end{proposition} \begin{proof} Let $P = \{n \in \naturals \mid \forall m \in \naturals. n \rmul m = m \rmul n\}$. $\zero \in P$. $P \subseteq \naturals$. It suffices to show that for all $n \in P$ we have $\suc{n} \in P$. Fix $n \in P$. It suffices to show that for all $m \in \naturals$ we have $\suc{n} \rmul m = m \rmul \suc{n}$. Fix $m \in \naturals$. $n \rmul m = m \rmul n$. \begin{align*} \suc{n} \rmul m \\ &= (n \rmul m) + m \\ &= (m \rmul n) + m \\ &= m + (m \rmul n) \\ &= m \rmul \suc{n} \\ \end{align*} \end{proof} \begin{proposition}\label{naturals_rmul_assoc} Suppose $n,m,k \in \naturals$. Then $n \rmul (m \rmul k) = (n \rmul m) \rmul k$. \end{proposition} \begin{lemma}\label{naturals_is_equal_to_two_times_naturals} $\{x+y \mid x \in \naturals, y \in \naturals \} = \naturals$. \end{lemma} \begin{proof} Omitted. \end{proof} \subsection{The Intergers} \begin{axiom}\label{reals_axiom_dense} For all $x,y \in \reals$ if $x < y$ then there exist $z \in \reals$ such that $x < z$ and $z < y$. \end{axiom} \begin{axiom}\label{reals_axiom_assoc} For all $x,y,z \in \reals$ $(x + y) + z = x + (y + z)$ and $(x \rmul y) \rmul z = x \rmul (y \rmul z)$. \end{axiom} \begin{axiom}\label{reals_axiom_kommu} For all $x,y \in \reals$ $x + y = y + x$ and $x \rmul y = y \rmul x$. \end{axiom} \begin{axiom}\label{reals_axiom_zero} For all $x \in \reals$ $x + \zero = x$. \end{axiom} \begin{axiom}\label{reals_axiom_one} For all $x \in \reals$ we have $x \rmul 1 = x$. \end{axiom} \begin{axiom}\label{reals_axiom_add_invers} For all $x \in \reals$ there exist $y \in \reals$ such that $x + y = \zero$. \end{axiom} \begin{axiom}\label{reals_axiom_mul_invers} For all $x \in \reals$ such that $x \neq \zero$ there exist $y \in \reals$ such that $x \rmul y = 1$. \end{axiom} \begin{axiom}\label{reals_axiom_disstro1} For all $x,y,z \in \reals$ $x \rmul (y + z) = (x \rmul y) + (x \rmul z)$. \end{axiom} \begin{axiom}\label{reals_axiom_dedekind_complete} For all $X,Y,x,y$ such that $X,Y \subseteq \reals$ and $x \in X$ and $y \in Y$ and $x < y$ we have there exist $z \in \reals$ such that $x < z < y$. \end{axiom} \begin{proposition}\label{reals_disstro2} For all $x,y,z \in \reals$ $(y + z) \rmul x = (y \rmul x) + (z \rmul x)$. \end{proposition} \begin{proof} Omitted. \end{proof} \begin{proposition}\label{reals_reducion_on_addition} For all $x,y,z \in \reals$ if $x + y = x + z$ then $y = z$. \end{proposition} \begin{proof} Omitted. \end{proof} %\begin{signature}\label{invers_is_set} % $\addInv{y}$ is a set. %\end{signature} %\begin{definition}\label{add_inverse} % $\addInv{y} = \{ x \mid \exists k \in \reals. k + y = \zero \land x \in k\}$. %\end{definition} %\begin{definition}\label{add_inverse_natural_language} % $x$ is additiv inverse of $y$ iff $x = \addInv{y}$. %\end{definition} %\begin{lemma}\label{rminus} % $x \rminus \addInv{x} = \zero$. %\end{lemma} \begin{lemma}\label{reals_add_of_positiv} Let $x,y \in \reals$. Suppose $x$ is positiv and $y$ is positiv. Then $x + y$ is positiv. \end{lemma} \begin{proof} Omitted. \end{proof} \begin{lemma}\label{reals_mul_of_positiv} Let $x,y \in \reals$. Suppose $x$ is positiv and $y$ is positiv. Then $x \rmul y$ is positiv. \end{lemma} \begin{proof} Omitted. \end{proof} \begin{lemma}\label{order_reals_lemma0} For all $x \in \reals$ we have not $x < x$. \end{lemma} \begin{proof} Omitted. \end{proof} \begin{lemma}\label{order_reals_lemma1} Let $x,y,z \in \reals$. Suppose $\zero < x$. Suppose $y < z$. Then $(y \rmul x) < (z \rmul x)$. \end{lemma} \begin{proof} Omitted. %There exist $k \in \reals$ such that $y + k = z$ and $k > \zero$ by \cref{reals_definition_order_def}. %\begin{align*} % (z \rmul x) \\ % &= ((y + k) \rmul x) \\ % &= ((y \rmul x) + (k \rmul x)) \explanation{by \cref{reals_disstro2}} %\end{align*} %Then $(k \rmul x) > \zero$. %Therefore $(z \rmul x) > (y \rmul x)$. \end{proof} \begin{lemma}\label{order_reals_lemma2} Let $x,y,z \in \reals$. Suppose $\zero < x$. Suppose $y < z$. Then $(x \rmul y) < (x \rmul z)$. \end{lemma} \begin{proof} Omitted. \end{proof} \begin{lemma}\label{order_reals_lemma3} Let $x,y,z \in \reals$. Suppose $\zero < x$. Suppose $y < z$. Then $(x \rmul z) < (x \rmul y)$. \end{lemma} \begin{proof} Omitted. \end{proof} \begin{lemma}\label{order_reals_lemma00} For all $x,y \in \reals$ such that $x > y$ we have $x \geq y$. \end{lemma} \begin{proof} Omitted. \end{proof} \begin{lemma}\label{order_reals_lemma5} For all $x,y \in \reals$ such that $x < y$ we have $x \leq y$. \end{lemma} \begin{proof} Omitted. \end{proof} \begin{lemma}\label{order_reals_lemma6} For all $x,y \in \reals$ such that $x \leq y \leq x$ we have $x=y$. \end{lemma} \begin{proof} Omitted. \end{proof} \begin{lemma}\label{reals_minus} Assume $x,y \in \reals$. If $x \rminus y = \zero$ then $x=y$. \end{lemma} \begin{proof} Omitted. \end{proof} \begin{definition}\label{upper_bound} $x$ is an upper bound of $X$ iff for all $y \in X$ we have $x > y$. \end{definition} \begin{definition}\label{least_upper_bound} $x$ is a least upper bound of $X$ iff $x$ is an upper bound of $X$ and for all $y$ such that $y$ is an upper bound of $X$ we have $x \leq y$. \end{definition} \begin{lemma}\label{supremum_unique} %Let $x,y \in \reals$ and let $X$ be a subset of $\reals$. If $x$ is a least upper bound of $X$ and $y$ is a least upper bound of $X$ then $x = y$. \end{lemma} \begin{proof} Omitted. \end{proof} \begin{definition}\label{supremum_reals} $x$ is the supremum of $X$ iff $x$ is a least upper bound of $X$. \end{definition} \begin{definition}\label{lower_bound} $x$ is an lower bound of $X$ iff for all $y \in X$ we have $x < y$. \end{definition} \begin{definition}\label{greatest_lower_bound} $x$ is a greatest lower bound of $X$ iff $x$ is an lower bound of $X$ and for all $y$ such that $y$ is an lower bound of $X$ we have $x \geq y$. \end{definition} \begin{lemma}\label{infimum_unique} If $x$ is a greatest lower bound of $X$ and $y$ is a greatest lower bound of $X$ then $x = y$. \end{lemma} \begin{proof} Omitted. \end{proof} \begin{definition}\label{infimum_reals} $x$ is the supremum of $X$ iff $x$ is a greatest lower bound of $X$. \end{definition} \begin{proposition}\label{safe} Contradiction. \end{proposition} \section{The integers} %\begin{definition} % $\integers = \{z \in \reals \mid z = \zero or \} $. %\end{definition}